TY - GEN
T1 - Competitive contagion in networks
AU - Goyal, Sanjeev
AU - Kearns, Michael
PY - 2012
Y1 - 2012
N2 - We develop a game-theoretic framework for the study of competition between firms who have budgets to "seed" the initial adoption of their products by consumers located in a social network. The payoffs to the firms are the eventual number of adoptions of their product through a competitive stochastic diffusion process in the network. This framework yields a rich class of competitive strategies, which depend in subtle ways on the stochastic dynamics of adoption, the relative budgets of the players, and the underlying structure of the social network. We identify a general property of the adoption dynamics - namely, decreasing returns to local adoption - for which the inefficiency of resource use at equilibrium (the Price of Anarchy) is uniformly bounded above, across all networks. We also show that if this property is violated the Price of Anarchy can be unbounded, thus yielding sharp threshold behavior for a broad class of dynamics. We also introduce a new notion, the Budget Multiplier, that measures the extent that imbalances in player budgets can be amplified at equilibrium. We again identify a general property of the adoption dynamics - namely, proportional local adoption between competitors - for which the (pure strategy) Budget Multiplier is uniformly bounded above, across all networks. We show that a violation of this property can lead to unbounded Budget Multiplier, again yielding sharp threshold behavior for a broad class of dynamics.
AB - We develop a game-theoretic framework for the study of competition between firms who have budgets to "seed" the initial adoption of their products by consumers located in a social network. The payoffs to the firms are the eventual number of adoptions of their product through a competitive stochastic diffusion process in the network. This framework yields a rich class of competitive strategies, which depend in subtle ways on the stochastic dynamics of adoption, the relative budgets of the players, and the underlying structure of the social network. We identify a general property of the adoption dynamics - namely, decreasing returns to local adoption - for which the inefficiency of resource use at equilibrium (the Price of Anarchy) is uniformly bounded above, across all networks. We also show that if this property is violated the Price of Anarchy can be unbounded, thus yielding sharp threshold behavior for a broad class of dynamics. We also introduce a new notion, the Budget Multiplier, that measures the extent that imbalances in player budgets can be amplified at equilibrium. We again identify a general property of the adoption dynamics - namely, proportional local adoption between competitors - for which the (pure strategy) Budget Multiplier is uniformly bounded above, across all networks. We show that a violation of this property can lead to unbounded Budget Multiplier, again yielding sharp threshold behavior for a broad class of dynamics.
KW - algorithmic game theory
KW - social networks
UR - http://www.scopus.com/inward/record.url?scp=84862632245&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862632245&partnerID=8YFLogxK
U2 - 10.1145/2213977.2214046
DO - 10.1145/2213977.2214046
M3 - Conference contribution
AN - SCOPUS:84862632245
SN - 9781450312455
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 759
EP - 774
BT - STOC '12 - Proceedings of the 2012 ACM Symposium on Theory of Computing
T2 - 44th Annual ACM Symposium on Theory of Computing, STOC '12
Y2 - 19 May 2012 through 22 May 2012
ER -