Abstract
We study the optimal transport between two probability measures on the real line, where the transport plans are laws of one-step martingales. A quasisure formulation of the dual problem is introduced and shown to yield a complete duality theory for general marginals and measurable reward (cost) functions: absence of a duality gap and existence of dual optimizers. Both properties are shown to fail in the classical formulation. As a consequence of the duality result, we obtain a general principle of cyclical monotonicity describing the geometry of optimal transports.
Original language | English (US) |
---|---|
Pages (from-to) | 3038-3074 |
Number of pages | 37 |
Journal | Annals of Probability |
Volume | 45 |
Issue number | 5 |
DOIs | |
State | Published - Sep 1 2017 |
Keywords
- Kantorovich duality
- Martingale optimal transport
ASJC Scopus subject areas
- Statistics and Probability
- Statistics, Probability and Uncertainty