Abstract
A feature correction two-stage vector quantization (FC2VQ) algorithm was previously developed to compress gray-scale photo identification (ID) pictures. This algorithm is extended to color images in this work. Three options are compared, which apply the FC2VQ algorithm in RGB, YCbCr, and Karhunen-Loeve transform (KLT) color spaces, respectively. The RGB-FC2VQ algorithm is found to yield better image quality than KLT-FC2VQ or YCbCr-FC2VQ at similar bit rates. With the RGB-FC2VQ algorithm, a 128 × 128 24-b color ID image (49 152 bytes) can be compressed down to about 500 bytes with satisfactory quality. When the codeword indices are further compressed losslessy using a first order Huffman coder, this size is further reduced to about 450 bytes.
Original language | English (US) |
---|---|
Pages (from-to) | 102-109 |
Number of pages | 8 |
Journal | IEEE Transactions on Image Processing |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - 1999 |
ASJC Scopus subject areas
- Software
- Computer Graphics and Computer-Aided Design