Abstract
Development of isoform-selective histone deacetylase (HDAC) inhibitors is of great biological and medical interest. Among 11 zinc-dependent HDAC isoforms, it is particularly challenging to achieve isoform inhibition selectivity between HDAC1 and HDAC2 due to their very high structural similarities. In this work, by developing and applying a novel de novo reaction-mechanism-based inhibitor design strategy to exploit the reactivity difference, we have discovered the first HDAC2-selective inhibitor, β-hydroxymethyl chalcone. Our bioassay experiments show that this new compound has a unique time-dependent selective inhibition on HDAC2, leading to about 20-fold isoform-selectivity against HDAC1. Furthermore, our ab initio QM/MM molecular dynamics simulations, a state-of-the-art approach to study reactions in biological systems, have elucidated how the β-hydroxymethyl chalcone can achieve the distinct time-dependent inhibition toward HDAC2.
Original language | English (US) |
---|---|
Pages (from-to) | 687-692 |
Number of pages | 6 |
Journal | ACS Chemical Biology |
Volume | 10 |
Issue number | 3 |
DOIs | |
State | Published - Mar 20 2015 |
ASJC Scopus subject areas
- Biochemistry
- Molecular Medicine