Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction.

Ludguier D. Montejo, Jingfei Jia, Hyun K. Kim, Uwe J. Netz, Sabine Blaschke, Gerhard A. Müller, Andreas H. Hielscher

Research output: Contribution to journalArticlepeer-review


This is the first part of a two-part paper on the application of computer-aided diagnosis to diffuse optical tomography (DOT). An approach for extracting heuristic features from DOT images and a method for using these features to diagnose rheumatoid arthritis (RA) are presented. Feature extraction is the focus of Part 1, while the utility of five classification algorithms is evaluated in Part 2. The framework is validated on a set of 219 DOT images of proximal interphalangeal (PIP) joints. Overall, 594 features are extracted from the absorption and scattering images of each joint. Three major findings are deduced. First, DOT images of subjects with RA are statistically different (p<0.05) from images of subjects without RA for over 90% of the features investigated. Second, DOT images of subjects with RA that do not have detectable effusion, erosion, or synovitis (as determined by MRI and ultrasound) are statistically indistinguishable from DOT images of subjects with RA that do exhibit effusion, erosion, or synovitis. Thus, this subset of subjects may be diagnosed with RA from DOT images while they would go undetected by reviews of MRI or ultrasound images. Third, scattering coefficient images yield better one-dimensional classifiers. A total of three features yield a Youden index greater than 0.8. These findings suggest that DOT may be capable of distinguishing between PIP joints that are healthy and those affected by RA with or without effusion, erosion, or synovitis.

Original languageEnglish (US)
Pages (from-to)76001
Number of pages1
JournalJournal of biomedical optics
Issue number7
StatePublished - 2013

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering


Dive into the research topics of 'Computer-aided diagnosis of rheumatoid arthritis with optical tomography, Part 1: feature extraction.'. Together they form a unique fingerprint.

Cite this