Computing confidence intervals for point process models

Sridevi V. Sarma, David P. Nguyen, Gabriela Czanner, Sylvia Wirth, Matthew A. Wilson, Wendy Suzuki, Emery N. Brown

Research output: Contribution to journalComment/debatepeer-review


Characterizing neural spiking activity as a function of intrinsic and extrinsic factors is important in neuroscience. Point process models are valuable for capturing such information; however, the process of fully applying thesemodels is not always obvious. A completemodel application has four broad steps: specification of the model, estimation ofmodel parameters given observed data, verification of the model using goodness of fit, and characterization of the model using confidence bounds. Of these steps, only the first three have been appliedwidely in the literature, suggesting the need to dedicate a discussion to how the time-rescaling theorem, in combinationwith parametric bootstrap sampling, can be generally used to compute confidence bounds of point process models. In our first example, we use a generalized linear model of spiking propensity to demonstrate that confidence bounds derived from bootstrap simulations are consistent with those computed from closed-form analytic solutions. In our second example, we consider an adaptive point process model of hippocampal place field plasticity for which no analytical confidence bounds can be derived. We demonstrate how to simulate bootstrap samples from adaptive point process models, how to use these samples to generate confidence bounds, and how to statistically test the hypothesis that neural representations at two time points are significantly different. These examples have been designed as useful guides for performing scientific inference based on point process models.

Original languageEnglish (US)
Pages (from-to)2731-2745
Number of pages15
JournalNeural computation
Issue number11
StatePublished - 2011

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Cognitive Neuroscience


Dive into the research topics of 'Computing confidence intervals for point process models'. Together they form a unique fingerprint.

Cite this