Concurrent vibration suppression and energy harvesting using ferrofluids: An experimental investigation

Saad F. Alazemi, Amin Bibo, Mohammed F. Daqaq

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents an experimental study which examines the design parameters affecting the performance characteristics of a Tuned Magnetic Fluid Damper (TMFD) device designed to concurrently mitigate structural vibrations and harvest vibratory energy. The device which is mounted on a vibrating structure, consists of a rectangular container carrying a magnetized ferrofluid and a pick-up coil wound around the container to enable energy harvesting. Experiments are performed to investigate the three-way interaction between the vibrations of the structure, the sloshing of the fluid, and the harvesting circuit dynamics. In particular, the tuning and optimization is examined for several design parameters including magnetic field spatial distribution and intensity, winding direction, winding location, winding density, and ferrofluid height inside the tank. The experimental response of the device is compared against the conventional TMFD at different excitation levels and frequencies. Results demonstrating the influence of the significant parameters on the relative performance are presented and discussed in terms of vibration suppression and power generation capabilities.

Original languageEnglish (US)
Title of host publicationASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
ISBN (Electronic)9780791846155
DOIs
StatePublished - 2014
EventASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 - Newport, United States
Duration: Sep 8 2014Sep 10 2014

Publication series

NameASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
Volume2

Other

OtherASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
CountryUnited States
CityNewport
Period9/8/149/10/14

ASJC Scopus subject areas

  • Biomaterials
  • Civil and Structural Engineering

Fingerprint Dive into the research topics of 'Concurrent vibration suppression and energy harvesting using ferrofluids: An experimental investigation'. Together they form a unique fingerprint.

Cite this