Confidence-Aware Safe and Stable Control of Control-Affine Systems

Shiqing Wei, Prashanth Krishnamurthy, Farshad Khorrami

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Designing control inputs that satisfy safety requirements is crucial in safety-critical nonlinear control, and this task becomes particularly challenging when full-state measurements are unavailable. In this work, we address the problem of synthesizing safe and stable control for control-affine systems via output feedback (using an observer) while reducing the estimation error of the observer. To achieve this, we adapt control Lyapunov function (CLF) and control barrier function (CBF) techniques to the output feedback setting. Building upon the existing CLF-CBF-QP (Quadratic Program) and CBF-QP frameworks, we formulate two confidence-aware optimization problems and establish the Lipschitz continuity of the obtained solutions. To validate our approach, we conduct simulation studies on two illustrative examples. The simulation studies indicate both improvements in the observer's estimation accuracy and the fulfillment of safety and control requirements.

Original languageEnglish (US)
Title of host publication2024 American Control Conference, ACC 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3371-3376
Number of pages6
ISBN (Electronic)9798350382655
DOIs
StatePublished - 2024
Event2024 American Control Conference, ACC 2024 - Toronto, Canada
Duration: Jul 10 2024Jul 12 2024

Publication series

NameProceedings of the American Control Conference
ISSN (Print)0743-1619

Conference

Conference2024 American Control Conference, ACC 2024
Country/TerritoryCanada
CityToronto
Period7/10/247/12/24

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Confidence-Aware Safe and Stable Control of Control-Affine Systems'. Together they form a unique fingerprint.

Cite this