Confined turbulent convection

J. J. Niemela, K. R. Sreenivasan

Research output: Contribution to journalArticlepeer-review

Abstract

New measurements of the Nusselt number have been made in turbulent thermal convection confined in a cylindrical container of aspect ratio unity. The apparatus is essentially the same as that used by Niemela et al. (2000), except that the height was halved. The measurement techniques were also identical but the mean temperature of the flow was held fixed for all Rayleigh numbers. The highest Rayleigh number was 2 × 1015. Together with existing data, the new measurements are analysed with the purpose of understanding the relation between the Nusselt number and the Rayleigh number, when the latter is large. In particular, the roles played by Prandtl number, aspect ratio, mean wind, boundary layers, sidewalls, and non-Boussinesq effects are discussed. Nusselt numbers, measured at the highest Rayleigh numbers for which Boussinesq conditions hold and sidewall forcing is negligible, are shown to vary approximately as a 1/3-power of the Rayleigh number. Much of the complexity in interpreting experimental data appears to arise from aspects of the mean flow, including complex coupling of its dynamics to sidewall boundary conditions of the container. Despite the obvious practical difficulties, we conclude that the next generation of experiments will be considerably more useful if they focus on large aspect ratios.

Original languageEnglish (US)
Pages (from-to)355-384
Number of pages30
JournalJournal of Fluid Mechanics
Volume481
DOIs
StatePublished - Apr 25 2003

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Confined turbulent convection'. Together they form a unique fingerprint.

Cite this