Conformal covariance of connection probabilities and fields in 2D critical percolation

Research output: Contribution to journalArticlepeer-review

Abstract

Fitting percolation into the conformal field theory framework requires showing that connection probabilities have a conformally invariant scaling limit. For critical site percolation on the triangular lattice, we prove that the probability that n vertices belong to the same open cluster has a well-defined scaling limit for every (Formula presented.). Moreover, the limiting functions (Formula presented.) transform covariantly under Möbius transformations of the plane as well as under local conformal maps, that is, they behave like correlation functions of primary operators in conformal field theory. In particular, they are invariant under translations, rotations and inversions, and (Formula presented.) for any (Formula presented.). This implies that (Formula presented.) and (Formula presented.), for some constants C2 and C3. We also define a site-diluted spin model whose n-point correlation functions Cn can be expressed in terms of percolation connection probabilities and, as a consequence, have a well-defined scaling limit with the same properties as the functions (Formula presented.). In particular, (Formula presented.). We prove that the magnetization field associated with this spin model has a well-defined scaling limit in an appropriate space of distributions. The limiting field transforms covariantly under Möbius transformations with exponent (scaling dimension) 5/48. A heuristic analysis of the four-point function of the magnetization field suggests the presence of an additional conformal field of scaling dimension 5/4, which counts the number of percolation four-arm events and can be identified with the so-called “four-leg operator” of conformal field theory.

Original languageEnglish (US)
Pages (from-to)2138-2176
Number of pages39
JournalCommunications on Pure and Applied Mathematics
Volume77
Issue number3
DOIs
StatePublished - Mar 2024

ASJC Scopus subject areas

  • General Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Conformal covariance of connection probabilities and fields in 2D critical percolation'. Together they form a unique fingerprint.

Cite this