Conformational analysis of the major DNA adduct derived from the food mutagen 2-amino-3-methylimidazo [4,5-f] quinoline

Xiangyang Wu, Robert Shapiro, Suse Broyde

Research output: Contribution to journalArticlepeer-review

Abstract

The heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is one of a number of carcinogens found in barbecued meat and fish. It is mutagenic in bacterial and mammalian assays and induces tumors in mammals. IQ is biochemically activated to a derivative which reacts with DNA to form a major covalent adduct at carbon 8 of guanine. This adduct may deform the DNA and consequently cause a mutation, which may be responsible for initiating IQ's carcinogenicity. Atomic resolution structures of the IQ-damaged DNA are not yet available experimentally. We have carried out an extensive molecular mechanics energy minimization search to locate feasible structures for the major IQ-DNA adduct in the representative sequence d(5'-G1-G2-C3-G4-C5-C6-A7- 3') · d(5'-T8-G9-G10-C11-G12-C13-C14-3') with IQ modification at G4; this contains the GGCGCC mutational hotspot sequence known as NarI. The molecular mechanics program AMBER 5.0 with the force field of Cornell et al. [(1995) J. Am. Chem. Soc. 117, 5179-5197] was employed, including explicit Na+ counterions and an implicit treatment for solvation. However, key parameters, the partial charges, bond lengths, bond angles, and dihedral parameters of the modified residue, are not available in the AMBER database. We carefully parametrized the force field, created 800 starting conformations which uniformly sampled at 18°intervals each of the three flexible torsion angles that govern the IQ-DNA orientation, and minimized their energy. A conformational mix of structural types, including major groove, minor groove, and base-displaced intercalated carcinogen positions, was generated. This mixture may be related to the diversity of mutational outcomes induced by IQ.

Original languageEnglish (US)
Pages (from-to)895-905
Number of pages11
JournalChemical research in toxicology
Volume12
Issue number10
DOIs
StatePublished - Oct 1999

ASJC Scopus subject areas

  • Toxicology

Fingerprint Dive into the research topics of 'Conformational analysis of the major DNA adduct derived from the food mutagen 2-amino-3-methylimidazo [4,5-f] quinoline'. Together they form a unique fingerprint.

Cite this