TY - JOUR
T1 - Conformational analysis of the major DNA adduct derived from the food mutagen 2-amino-3-methylimidazo [4,5-f] quinoline
AU - Wu, Xiangyang
AU - Shapiro, Robert
AU - Broyde, Suse
PY - 1999/10
Y1 - 1999/10
N2 - The heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is one of a number of carcinogens found in barbecued meat and fish. It is mutagenic in bacterial and mammalian assays and induces tumors in mammals. IQ is biochemically activated to a derivative which reacts with DNA to form a major covalent adduct at carbon 8 of guanine. This adduct may deform the DNA and consequently cause a mutation, which may be responsible for initiating IQ's carcinogenicity. Atomic resolution structures of the IQ-damaged DNA are not yet available experimentally. We have carried out an extensive molecular mechanics energy minimization search to locate feasible structures for the major IQ-DNA adduct in the representative sequence d(5'-G1-G2-C3-G4-C5-C6-A7- 3') · d(5'-T8-G9-G10-C11-G12-C13-C14-3') with IQ modification at G4; this contains the GGCGCC mutational hotspot sequence known as NarI. The molecular mechanics program AMBER 5.0 with the force field of Cornell et al. [(1995) J. Am. Chem. Soc. 117, 5179-5197] was employed, including explicit Na+ counterions and an implicit treatment for solvation. However, key parameters, the partial charges, bond lengths, bond angles, and dihedral parameters of the modified residue, are not available in the AMBER database. We carefully parametrized the force field, created 800 starting conformations which uniformly sampled at 18°intervals each of the three flexible torsion angles that govern the IQ-DNA orientation, and minimized their energy. A conformational mix of structural types, including major groove, minor groove, and base-displaced intercalated carcinogen positions, was generated. This mixture may be related to the diversity of mutational outcomes induced by IQ.
AB - The heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is one of a number of carcinogens found in barbecued meat and fish. It is mutagenic in bacterial and mammalian assays and induces tumors in mammals. IQ is biochemically activated to a derivative which reacts with DNA to form a major covalent adduct at carbon 8 of guanine. This adduct may deform the DNA and consequently cause a mutation, which may be responsible for initiating IQ's carcinogenicity. Atomic resolution structures of the IQ-damaged DNA are not yet available experimentally. We have carried out an extensive molecular mechanics energy minimization search to locate feasible structures for the major IQ-DNA adduct in the representative sequence d(5'-G1-G2-C3-G4-C5-C6-A7- 3') · d(5'-T8-G9-G10-C11-G12-C13-C14-3') with IQ modification at G4; this contains the GGCGCC mutational hotspot sequence known as NarI. The molecular mechanics program AMBER 5.0 with the force field of Cornell et al. [(1995) J. Am. Chem. Soc. 117, 5179-5197] was employed, including explicit Na+ counterions and an implicit treatment for solvation. However, key parameters, the partial charges, bond lengths, bond angles, and dihedral parameters of the modified residue, are not available in the AMBER database. We carefully parametrized the force field, created 800 starting conformations which uniformly sampled at 18°intervals each of the three flexible torsion angles that govern the IQ-DNA orientation, and minimized their energy. A conformational mix of structural types, including major groove, minor groove, and base-displaced intercalated carcinogen positions, was generated. This mixture may be related to the diversity of mutational outcomes induced by IQ.
UR - http://www.scopus.com/inward/record.url?scp=0032704090&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032704090&partnerID=8YFLogxK
U2 - 10.1021/tx990108w
DO - 10.1021/tx990108w
M3 - Article
C2 - 10525264
AN - SCOPUS:0032704090
SN - 0893-228X
VL - 12
SP - 895
EP - 905
JO - Chemical research in toxicology
JF - Chemical research in toxicology
IS - 10
ER -