Consequences of delays and imperfect implementation of isolation in epidemic control

Lai Sang Young, Stefan Ruschel, Serhiy Yanchuk, Tiago Pereira

Research output: Contribution to journalArticlepeer-review

Abstract

For centuries isolation has been the main control strategy of unforeseen epidemic outbreaks. When implemented in full and without delay, isolation is very effective. However, flawless implementation is seldom feasible in practice. We present an epidemic model called SIQ with an isolation protocol, focusing on the consequences of delays and incomplete identification of infected hosts. The continuum limit of this model is a system of Delay Differential Equations, the analysis of which reveals clearly the dependence of epidemic evolution on model parameters including disease reproductive number, isolation probability, speed of identification of infected hosts and recovery rates. Our model offers estimates on minimum response capabilities needed to curb outbreaks, and predictions of endemic states when containment fails. Critical response capability is expressed explicitly in terms of parameters that are easy to obtain, to assist in the evaluation of funding priorities involving preparedness and epidemics management.

Original languageEnglish (US)
Article number3505
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Consequences of delays and imperfect implementation of isolation in epidemic control'. Together they form a unique fingerprint.

Cite this