Constraining the astrophysics and cosmology from 21 cm tomography using deep learning with the SKA

Sultan Hassan, Sambatra Andrianomena, Caitlin Doughty

Research output: Contribution to journalArticlepeer-review


Future Square Kilometre Array (SKA) surveys are expected to generate huge data sets of 21 cm maps on cosmological scales from the Epoch of Reionization. We assess the viability of exploiting machine learning techniques, namely, convolutional neural networks (CNNs), to simultaneously estimate the astrophysical and cosmological parameters from 21 cm maps from seminumerical simulations. We further convert the simulated 21 cm maps into SKA-like mock maps using the detailed SKA antennae distribution, thermal noise, and a recipe for foreground cleaning. We successfully design two CNN architectures (VGGNet-like and ResNet-like) that are both efficiently able to extract simultaneously three astrophysical parameters, namely the photon ESCape fraction (fESC), the ionizing emissivity power dependence on halo mass (Cion), and the ionizing emissivity redshift evolution index (Dion), and three cosmological parameters, namely the matter density parameter (ωm), the dimensionless Hubble constant (h), and the matter fluctuation amplitude (σ8), from 21 cm maps at several redshifts. With the presence of noise from SKA, our designed CNNs are still able to recover these astrophysical and cosmological parameters with great accuracy (R2 > 92 per cent), improving to R2 > 99 per cent towards low-redshift and low neutral fraction values. Our results show that future 21 cm observations can play a key role to break degeneracy between models and tightly constrain the astrophysical and cosmological parameters, using only few frequency channels.

Original languageEnglish (US)
Pages (from-to)5761-5774
Number of pages14
JournalMonthly Notices of the Royal Astronomical Society
Issue number4
StatePublished - Jun 1 2020


  • cosmological parameters
  • dark ages, reionization, first stars
  • galaxies: high-redshift
  • intergalactic medium
  • methods: statistical

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Constraining the astrophysics and cosmology from 21 cm tomography using deep learning with the SKA'. Together they form a unique fingerprint.

Cite this