TY - GEN
T1 - Constructive Post-Quantum Reductions
AU - Bitansky, Nir
AU - Brakerski, Zvika
AU - Kalai, Yael Tauman
N1 - Publisher Copyright:
© 2022, International Association for Cryptologic Research.
PY - 2022
Y1 - 2022
N2 - Is it possible to convert classical reductions into post-quantum ones? It is customary to argue that while this is problematic in the interactive setting, non-interactive reductions do carry over. However, when considering quantum auxiliary input, this conversion results in a non-constructive post-quantum reduction that requires duplicating the quantum auxiliary input, which is in general inefficient or even impossible. This violates the win-win premise of provable cryptography: an attack against a cryptographic primitive should lead to an algorithmic advantage. We initiate the study of constructive quantum reductions and present positive and negative results for converting large classes of classical reductions to the post-quantum setting in a constructive manner. We show that any non-interactive non-adaptive reduction from assumptions with a polynomial solution space (such as decision assumptions) can be made post-quantum constructive. In contrast, assumptions with super-polynomial solution space (such as general search assumptions) cannot be generally converted. Along the way, we make several additional contributions: 1.We put forth a framework for reductions (or general interaction) with stateful solvers for a computational problem, that may change their internal state between consecutive calls. We show that such solvers can still be utilized. This framework and our results are meaningful even in the classical setting.2.A consequence of our negative result is that quantum auxiliary input that is useful against a problem with a super-polynomial solution space cannot be generically “restored” post-measurement. This shows that the novel rewinding technique of Chiesa et al. (FOCS 2021) is tight in the sense that it cannot be extended beyond a polynomial measurement space.
AB - Is it possible to convert classical reductions into post-quantum ones? It is customary to argue that while this is problematic in the interactive setting, non-interactive reductions do carry over. However, when considering quantum auxiliary input, this conversion results in a non-constructive post-quantum reduction that requires duplicating the quantum auxiliary input, which is in general inefficient or even impossible. This violates the win-win premise of provable cryptography: an attack against a cryptographic primitive should lead to an algorithmic advantage. We initiate the study of constructive quantum reductions and present positive and negative results for converting large classes of classical reductions to the post-quantum setting in a constructive manner. We show that any non-interactive non-adaptive reduction from assumptions with a polynomial solution space (such as decision assumptions) can be made post-quantum constructive. In contrast, assumptions with super-polynomial solution space (such as general search assumptions) cannot be generally converted. Along the way, we make several additional contributions: 1.We put forth a framework for reductions (or general interaction) with stateful solvers for a computational problem, that may change their internal state between consecutive calls. We show that such solvers can still be utilized. This framework and our results are meaningful even in the classical setting.2.A consequence of our negative result is that quantum auxiliary input that is useful against a problem with a super-polynomial solution space cannot be generically “restored” post-measurement. This shows that the novel rewinding technique of Chiesa et al. (FOCS 2021) is tight in the sense that it cannot be extended beyond a polynomial measurement space.
UR - http://www.scopus.com/inward/record.url?scp=85141695862&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141695862&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-15982-4_22
DO - 10.1007/978-3-031-15982-4_22
M3 - Conference contribution
AN - SCOPUS:85141695862
SN - 9783031159817
T3 - Lecture Notes in Computer Science
SP - 654
EP - 683
BT - Advances in Cryptology – CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022, Proceedings
A2 - Dodis, Yevgeniy
A2 - Shrimpton, Thomas
PB - Springer Science and Business Media Deutschland GmbH
T2 - 42nd Annual International Cryptology Conference, CRYPTO 2022
Y2 - 15 August 2022 through 18 August 2022
ER -