Contact status optimization of multibody dynamic systems using dual variable transformation

Carlotta Mummolo, Luigi Mangialardi, Joo H. Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Generating the motion of redundant systems under general constraints within an optimization framework is a problem not yet solved, as there is, so far, a lack of completely predictive methods that concurrently solve for the optimal trajectory and the contact status induced by the given constraints. A novel approach for optimal motion planning of multibody systems with contacts is developed, based on a Sequential Quadratic Programming (SQP) algorithm for Nonlinear Programming (NLP). The objective is to detect and optimize the contact status and the relative contact force within the optimization sequential problem, while simultaneously optimizing a trajectory. The novelty is to seek for the contact information within the iterative solution of the SQP algorithm and use this information to sequentially update the resulting contact force in the system's dynamic model. This is possible by looking at the analytical relationship between the dual variables resulting from the constrained NLP and the Lagrange multipliers that represent the contact forces in the classical formulation of constrained dynamic systems. This approach will result in a fully predictive algorithm that doesn't require any a priori knowledge on the contact status (e.g., time of contact, point of contact, etc.) or contact force magnitude. A preliminary formulation is presented, as well as numerical experiments on simple planar manipulators, as demonstration of concepts.

Original languageEnglish (US)
Title of host publication10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846391
DOIs
StatePublished - 2014
EventASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014 - Buffalo, United States
Duration: Aug 17 2014Aug 20 2014

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume6

Other

OtherASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
CountryUnited States
CityBuffalo
Period8/17/148/20/14

Keywords

  • Contact dynamics
  • Lagrange multipliers
  • Optimization
  • Redundant systems
  • SQP

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Contact status optimization of multibody dynamic systems using dual variable transformation'. Together they form a unique fingerprint.

  • Cite this

    Mummolo, C., Mangialardi, L., & Kim, J. H. (2014). Contact status optimization of multibody dynamic systems using dual variable transformation. In 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (Proceedings of the ASME Design Engineering Technical Conference; Vol. 6). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/DETC201434193