ContactNet: Online Multi-Contact Planning for Acyclic Legged Robot Locomotion

Angelo Bratta, Avadesh Meduri, Michele Focchi, Ludovic Righetti, Claudio Semini

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The field of legged robots has seen tremendous progress in the last few years. Locomotion trajectories are commonly generated by optimization algorithms in a Model Predictive Control (MPC) loop. To achieve online trajectory optimization, the locomotion community generally makes use of heuristic-based contact planners due to their low computation times and high replanning frequencies. In this work, we propose ContactNet, a fast acyclic contact planner based on a multi-output regression neural network. ContactNet ranks discretized stepping locations, allowing to quickly choose the best feasible solution, even in complex environments. The low computation time, in the order of 1 ms, enables the execution of the contact planner concurrently with a trajectory optimizer in a MPC fashion. In addition, the computational time does not scale up with the configuration of the terrain. We demonstrate the effectiveness of the approach in simulation in different scenarios with the quadruped robot Solo12. To the best knowledge of the authors, this is the first time a contact planner is presented that does not exhibit an increasing computational time on irregular terrains with an increasing number of gaps.

Original languageEnglish (US)
Title of host publication2024 21st International Conference on Ubiquitous Robots, UR 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages747-754
Number of pages8
ISBN (Electronic)9798350361070
DOIs
StatePublished - 2024
Event21st International Conference on Ubiquitous Robots, UR 2024 - New York, United States
Duration: Jun 24 2024Jun 27 2024

Publication series

Name2024 21st International Conference on Ubiquitous Robots, UR 2024

Conference

Conference21st International Conference on Ubiquitous Robots, UR 2024
Country/TerritoryUnited States
CityNew York
Period6/24/246/27/24

ASJC Scopus subject areas

  • Modeling and Simulation
  • Artificial Intelligence
  • Computer Science Applications
  • Media Technology
  • Control and Optimization
  • Surgery

Fingerprint

Dive into the research topics of 'ContactNet: Online Multi-Contact Planning for Acyclic Legged Robot Locomotion'. Together they form a unique fingerprint.

Cite this