Content-based video genre classification using multiple cues

Hazim Kemal Ekenel, Tomas Semela, Rainer Stiefelhagen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents an automatic video genre classification system, which utilizes several low-level audio-visual cues as well as cognitive and structural information to classify the types of TV programs and YouTube videos. Classification is performed using support vector machines. The system is integrated to our content-based video processing system and shares the same features that we have been using for high-level feature detection task in TRECVID evaluations. The proposed system is extensively evaluated using complete TV programs from Italian RAI TV channel, from French TV channels, and videos from YouTube on which 99.6%, 99%, and 92.4% correct classification rates are attained, respectively. These results show that the developed system can reliably determine TV programs' genre. It also provides a good basis for classifying genres of YouTube videos, which can be improved by using additional information, such as tags and titles, to obtain more robust results. Further experiments indicate that the quality of video does not influence the results significantly. It is found that the performance drop in classifying genres of YouTube videos is mainly due to the large variety of content contained in these videos.

Original languageEnglish (US)
Title of host publicationAIEMPro'10 - Proceedings of the 2010 ACM Workshop on Automated Information Extraction in Media Production, Co-located with ACM Multimedia 2010
Pages21-26
Number of pages6
DOIs
StatePublished - 2010
Event2010 ACM Workshop on Automated Information Extraction in Media Production, AIEMPro'10, Co-located with ACM Multimedia 2010 - Firenze, Italy
Duration: Oct 29 2010Oct 29 2010

Publication series

NameAIEMPro'10 - Proceedings of the 2010 ACM Workshop on Automated Information Extraction in Media Production, Co-located with ACM Multimedia 2010

Conference

Conference2010 ACM Workshop on Automated Information Extraction in Media Production, AIEMPro'10, Co-located with ACM Multimedia 2010
Country/TerritoryItaly
CityFirenze
Period10/29/1010/29/10

Keywords

  • Audio-visual
  • Genre classification
  • TV programs
  • YouTube videos

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Computer Vision and Pattern Recognition
  • Human-Computer Interaction
  • Information Systems

Fingerprint

Dive into the research topics of 'Content-based video genre classification using multiple cues'. Together they form a unique fingerprint.

Cite this