TY - JOUR
T1 - Contribution of postsynaptic Ca2+ to the induction of posttetanic potentiation in the neural circuit for siphon withdrawal in Aplysia
AU - Schaffhausen, Joanna H.
AU - Fischer, Thomas M.
AU - Carew, Thomas J.
PY - 2001/3/1
Y1 - 2001/3/1
N2 - Recent studies in Aplysia have revealed a novel postsynaptic Ca2+ component to posttetanic potentiation (PTP) at the siphon sensory to motor neuron (SN-MN) synapse. Here we asked whether the postsynaptic Ca2+ component of PTP was a special feature of the SN-MN synapse, and if so, whether it reflected a unique property of the SN or the MN. We examined whether postsynaptic injection of BAPTA reduced PTP at SN synapses onto different postsynaptic targets by comparing PTP at SN-MN and SN-interneuron (L29) synapses. We also examined PTP at L29-MN synapses. Postsynaptic BAPTA reduced PTP only at the SN-MN synapse; it did not affect PTP at either the SN-L29 or the L29-MN synapse, indicating that the SN and the MN do not require postsynaptic Ca2+ for PTP with all other synaptic partners. The postsynaptic Ca2+ component of PTP is present at other Aplysia SN-MN synapses; tail SN-MN synapses also showed reduced PTP when the MN was injected with BAPTA. Surprisingly, in both tail and siphon SN-MN synapses, there was an inverse relationship between the initial size of the EPSP and the postsynaptic component to PTP; only the initially weak SN-MN synapses showed a BAPTA-sensitive component. Homosynaptic depression of initially strong SN-MN synapses into the size range of initially weak synapses did not confer postsynaptic Ca2+ sensitivity to PTP. Finally, the postsynaptic Ca2+ component of PTP could be induced in the presence of APV, indicating that it is not mediated by NMDA receptors. These results suggest a dual model for PTP at the SN-MN synapse, in which a postsynaptic Ca2+ contribution summates with the conventional presynaptic mechanisms to yield an enhanced form of PTP.
AB - Recent studies in Aplysia have revealed a novel postsynaptic Ca2+ component to posttetanic potentiation (PTP) at the siphon sensory to motor neuron (SN-MN) synapse. Here we asked whether the postsynaptic Ca2+ component of PTP was a special feature of the SN-MN synapse, and if so, whether it reflected a unique property of the SN or the MN. We examined whether postsynaptic injection of BAPTA reduced PTP at SN synapses onto different postsynaptic targets by comparing PTP at SN-MN and SN-interneuron (L29) synapses. We also examined PTP at L29-MN synapses. Postsynaptic BAPTA reduced PTP only at the SN-MN synapse; it did not affect PTP at either the SN-L29 or the L29-MN synapse, indicating that the SN and the MN do not require postsynaptic Ca2+ for PTP with all other synaptic partners. The postsynaptic Ca2+ component of PTP is present at other Aplysia SN-MN synapses; tail SN-MN synapses also showed reduced PTP when the MN was injected with BAPTA. Surprisingly, in both tail and siphon SN-MN synapses, there was an inverse relationship between the initial size of the EPSP and the postsynaptic component to PTP; only the initially weak SN-MN synapses showed a BAPTA-sensitive component. Homosynaptic depression of initially strong SN-MN synapses into the size range of initially weak synapses did not confer postsynaptic Ca2+ sensitivity to PTP. Finally, the postsynaptic Ca2+ component of PTP could be induced in the presence of APV, indicating that it is not mediated by NMDA receptors. These results suggest a dual model for PTP at the SN-MN synapse, in which a postsynaptic Ca2+ contribution summates with the conventional presynaptic mechanisms to yield an enhanced form of PTP.
KW - Aplysia
KW - Postsynaptic Ca
KW - Posttetanic potentiation
KW - Sensory neurons
KW - Short-term facilitation
KW - Synaptic plasticity
UR - http://www.scopus.com/inward/record.url?scp=0035263615&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035263615&partnerID=8YFLogxK
U2 - 10.1523/jneurosci.21-05-01739.2001
DO - 10.1523/jneurosci.21-05-01739.2001
M3 - Article
C2 - 11222663
AN - SCOPUS:0035263615
SN - 0270-6474
VL - 21
SP - 1739
EP - 1749
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 5
ER -