Abstract
This paper considers the problem of stabilization of discrete-time systems with actuator nonlinearities. The proposed framework is based on a linear matrix inequality (LMI) approach and directly accounts for robust stability and robust performance over the class of actuator nonlinearities. Furthermore, it is directly applicable to actuator saturation control and provides state feedback controllers with guaranteed domains of attraction.
Original language | English (US) |
---|---|
Pages (from-to) | 1419-1420 |
Number of pages | 2 |
Journal | Proceedings of the IEEE Conference on Decision and Control |
Volume | 2 |
State | Published - 1999 |
Event | The 38th IEEE Conference on Decision and Control (CDC) - Phoenix, AZ, USA Duration: Dec 7 1999 → Dec 10 1999 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Modeling and Simulation
- Control and Optimization