Abstract
The Ising-Kac model is a variant of the ferromagnetic Ising model in which each spin variable interacts with all spins in a neighborhood of radius γ− 1 for « 1 around its base point. We study the Glauber dynamics for this model on a discrete two-dimensional torus Z2/(2N + 1)Z2 for a system size « 1 γ-1 and for an inverse temperature close to the critical value of the mean field model. We show that the suitably rescaled coarse-grained spin field converges in distribution to the solution of a nonlinear stochastic partial differential equation. This equation is the dynamic version of the Ф4 2 quantum field theory, which is formally given by a reaction-diffusion equation driven by an additive space-time white noise. It is well-known that in two spatial dimensions such equations are distribution valued and a Wick renormalization has to be performed in order to define the nonlinear term. Formally, this renormalization corresponds to adding an infinite mass term to the equation. We show that this need for renormalization for the limiting equation is reflected in the discrete system by a shift of the critical temperature away from its mean field value.
Original language | English (US) |
---|---|
Pages (from-to) | 717-812 |
Number of pages | 96 |
Journal | Communications on Pure and Applied Mathematics |
Volume | 70 |
Issue number | 4 |
DOIs | |
State | Published - Apr 1 2017 |
ASJC Scopus subject areas
- General Mathematics
- Applied Mathematics