Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations

Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

There has been much interest in unsupervised learning of hierarchical generative models such as deep belief networks. Scaling such models to full-sized, high-dimensional images remains a difficult problem. To address this problem, we present the convolutional deep belief network, a hierarchical generative model which scales to realistic image sizes. This model is translation-invariant and supports efficient bottom-up and top-down probabilistic inference. Key to our approach is probabilistic max-pooling, a novel technique which shrinks the representations of higher layers in a probabilistically sound way. Our experiments show that the algorithm learns useful high-level visual features, such as object parts, from unlabeled images of objects and natural scenes. We demonstrate excellent performance on several visual recognition tasks and show that our model can perform hierarchical (bottom-up and top-down) inference over full-sized images.

Original languageEnglish (US)
Title of host publicationProceedings of the 26th International Conference On Machine Learning, ICML 2009
Pages609-616
Number of pages8
StatePublished - 2009
Event26th International Conference On Machine Learning, ICML 2009 - Montreal, QC, Canada
Duration: Jun 14 2009Jun 18 2009

Publication series

NameProceedings of the 26th International Conference On Machine Learning, ICML 2009

Other

Other26th International Conference On Machine Learning, ICML 2009
Country/TerritoryCanada
CityMontreal, QC
Period6/14/096/18/09

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Software

Fingerprint

Dive into the research topics of 'Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations'. Together they form a unique fingerprint.

Cite this