Convolutional neural networks applied to house numbers digit classification

Pierre Sermanet, Soumith Chintala, Yann Lecun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We classify digits of real-world house numbers using convolutional neural networks (ConvNets). Con-vNets are hierarchical feature learning neural networks whose structure is biologically inspired. Unlike many popular vision approaches that are hand-designed, ConvNets can automatically learn a unique set of features optimized for a given task. We augmented the traditional ConvNet architecture by learning multi-stage features and by using Lp pooling and establish a new state-of-the-art of 95.10% accuracy on the SVHN dataset (48% error improvement). Furthermore, we analyze the benefits of different pooling methods and multi-stage features in ConvNets. The source code and a tutorial are available at eblearn.sf.net.

Original languageEnglish (US)
Title of host publicationICPR 2012 - 21st International Conference on Pattern Recognition
Pages3288-3291
Number of pages4
StatePublished - 2012
Event21st International Conference on Pattern Recognition, ICPR 2012 - Tsukuba, Japan
Duration: Nov 11 2012Nov 15 2012

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651

Other

Other21st International Conference on Pattern Recognition, ICPR 2012
Country/TerritoryJapan
CityTsukuba
Period11/11/1211/15/12

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Convolutional neural networks applied to house numbers digit classification'. Together they form a unique fingerprint.

Cite this