TY - JOUR
T1 - Corrigendum to “Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis” [Biomater. 161 (2018) 164–178, (Biomaterials (2018) 161(164-178) (S0142961218300735), (10.1016/j.biomaterials.2018.01.053))
AU - Cui, Xin
AU - Tan Morales, Renee Tyler
AU - Qian, Weiyi
AU - Wang, Haoyu
AU - Gagner, Jean Pierre
AU - Dolgalev, Igor
AU - Placantonakis, Dimitris
AU - Zagzag, David
AU - Cimmino, Luisa
AU - Snuderl, Matija
AU - Lam, Raymond H.W.
AU - Chen, Weiqiang
N1 - Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2022/8
Y1 - 2022/8
N2 - The correct reference list is shown below. [1] G.T. Motz, G. Coukos, The parallel lives of angiogenesis and immunosuppression: cancer and other tales, Nat. Rev. Immunol. 11 (10) (2011) 702–711. [2] A.M. Swartz, Q.-J. Li, J.H. Sampson, Rindopepimut: a Promising Immunotherapeutic for the Treatment of Glioblastoma Multiforme, Immunotherapy 6 (6) (2014) 679–690. [3] M. Weller, T. Cloughesy, J.R. Perry, W. Wick, Standards of care for treatment of recurrent glioblastoma―are we there yet? Neuro Oncol. 15 (1) (2013) 4–27. [4] H. Miletic, S.P. Niclou, M. Johansson, R. Bjerkvig, Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms, Expert Opin. Ther. Targets 13 (4) (2009) 455–468. [5] E.R. Gerstner, T.T. Batchelor, Antiangiogenic therapy for glioblastoma, Cancer J. 18 (1) (2012) 45–50. [6] C. Jackson, J. Ruzevick, J. Phallen, Z. Belcaid, M. Lim, Challenges in immuno-therapy presented by the glioblastoma multiforme microenvironment, Clin. Dev. Immunol. 2011 (2011) 732413. [7] A.A. Thomas, M.S. Ernstoff, C.E. Fadul, Immunotherapy for the treatment of glioblastoma, Cancer J. 18 (1) (2012) 59–68. [8] D. Hambardzumyan, G. Bergers, Glioblastoma: defining tumor niches, Trends Cancer 1 (4) (2015) 252–265. [9] N.S. Agrawal, R. Miller Jr., R. Lal, H. Mahanti, Y.N. Dixon-Mah, M.L. DeCandio, W.A. Vandergrift III, A.K. Varma, S.J. Patel, N.L. Banik, S.M. Lindhorst, P. Giglio, A. Das, Current studies of immunotherapy on glioblastoma, J. Neurol. Neurosci. 1 (1) (2014) 21000104. [10] E.A. Vega, M.W. Graner, J.H. Sampson, Combating immunosuppression in glioma, Future Oncol. 4 (3) (2008) 433–442. [11] E. di Tomaso, M. Snuderl, W.S. Kamoun, D.G. Duda, P.K. Auluck, L. Fazlollahi, O.C. Andronesi, M.P. Frosch, P.Y. Wen, S.R. Plotkin, E.T. Hedley-Whyte, A.G. Sorensen, T.T. Batchelor, R.K. Jain, Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape, Canc. Res. 71 (1) (2011) 19–28. [12] C. Lu-Emerson, M. Snuderl, N.D. Kirkpatrick, J. Goveia, C. Davidson, Y. Huang, L. Riedemann, J. Taylor, P. Ivy, D.G. Duda, M. Ancukiewicz, S.R. Plotkin, A.S. Chi, E.R. Gerstner, A.F. Eichler, J. Dietrich, A.O. Stemmer-Rachamimov, T.T. Batchelor, R.K. Jain, Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma, Neuro Oncol. 15 (8) (2013) 1079–1087. [13] C. Humpel, Organotypic brain slice cultures: a review, Neuroscience 305 (2015) 86–98. [14] P. DelNero, M. Lane, S.S. Verbridge, B. Kwee, P. Kermani, B. Hempstead, A. Stroock, C. Fischbach, 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways, Biomaterials 55 (2015) 110–118. [15] D. Ribatti, E. Crivellato, Immune cells and angiogenesis, J. Cell Mol. Med. 13 (9a) (2009) 2822–2833. [16] J.-L. Sun, K. Jiao, L.-N. Niu, Y. Jiao, Q. Song, L.-j. Shen, F.R. Tay, J.-h. Chen, Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration, Biomaterials 113 (2017) 203–216. [17] I. Daphu, T. Sundstrøm, S. Horn, P.C. Huszthy, S.P. Niclou, P.Ø. Sakariassen, H. Immervoll, H. Miletic, R. Bjerkvig, F. Thorsen, In vivo animal models for studying brain metastasis: value and limitations, Clin. Exp. Metastasis 30 (5) (2013) 695–710. [18] F. Shimizu, K.E. Hovinga, M. Metzner, D. Soulet, V. Tabar, Organotypic explant culture of glioblastoma multiforme and subsequent single-cell suspension, Curr. Protoc. Stem Cell Biol. (Chapter 3) (2011). Unit 3.5. [19] C. Liu, X. Cui, T.M. Ackermann, V. Flamini, W. Chen, A.B. Castillo, Osteoblast-derived paracrine factors regulate angiogenesis in response to mechanical stimulation, Integr. Biosci. 8 (7) (2016) 785–794. [20] Y. Zheng, J. Chen, M. Craven, N.W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J.A. López, A.D. Stroock, In vitro microvessels for the study of angiogenesis and thrombosis, Proc. Natl. Acad. Sci. USA 109 (24) (2012) 9342–9347. [21] H. Ungefroren, S. Sebens, D. Seidl, H. Lehnert, R. Hass, Interaction of tumor cells with the microenvironment, Cell Commun. Signal. 9 (1) (2011) 18. [22] A. Fantin, J.M. Vieira, G. Gestri, L. Denti, Q. Schwarz, S. Prykhozhij, F. Peri, S.W. Wilson, C. Ruhrberg, Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell in-duction, Blood 116 (5) (2010) 829–840. [23] A. Rape, B. Ananthanarayanan, S. Kumar, Engineering strategies to mimic the glioblastoma microenvironment, Adv. Drug Deliv. Rev. 79 (2014) 172–183. [24] O. Schnell, B. Krebs, E. Wagner, A. Romagna, A.J. Beer, S.J. Grau, N. Thon, C. Goetz, H.A. Kretzschmar, J.C. Tonn, R.H. Goldbrunner, Expression of integrin αvb3 in gliomas correlates with tumor grade and is not restricted to tumor vasculature, Brain Pathol. 18 (3) (2008) 378–386. [25] M.G. Overstreet, A. Gaylo, B.R. Angermann, A. Hughson, Y.-M. Hyun, K. Lambert, M. Acharya, A.C. Billroth-MacLurg, A.F. Rosenberg, D.J. Topham, H. Yagita, M. Kim, A. Lacy-Hulbert, M. Meier-Schellersheim, D.J. Fowell, Inflammation-induced interstitial migration of effector CD4þT cells is dependent on integrin [alpha] V, Nat. Immunol. 14 (9) (2013) 949–958. [26] S.M. Weis, D.A. Cheresh, αV integrins in angiogenesis and cancer, Cold Spring Harb. Perspect. Med. 1 (1) (2011), a006478. [27] Y. Feng, Q. Li, D. Wu, Y. Niu, C. Yang, L. Dong, C. Wang, A macrophage-activating, injectable hydrogel to sequester endogenous growth factors for in situ angiogenesis, Biomaterials 134 (2017) 128–142. [28] N. Jetten, S. Verbruggen, M.J. Gijbels, M.J. Post, M.P. De Winther, M.M. Donners, Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo, Angiogenesis 17 (1) (2014) 109–118. [29] Y.F. Tian, H. Ahn, R.S. Schneider, S.N. Yang, L. Roman-Gonzalez, A.M. Melnick, L. Cerchietti, A. Singh, Integrin-specific hydrogels as adaptable tumor organoids for malignant B and T cells, Biomaterials 73 (2015) 110–119. [30] G.A. Monteiro, A.V. Fernandes, H.G. Sundararaghavan, D.I. Shreiber, Positively and negatively modulating cell adhesion to type I collagen via peptide grafting, Tissue Eng. 17 (13e14) (2009) 1663–1673. [31] D.-H.T. Nguyen, S.C. Stapleton, M.T. Yang, S.S. Cha, C.K. Choi, P.A. Galie, C.S. Chen, Biomimetic model to reconstitute angiogenic sprouting morpho-genesis in vitro, Proc. Natl. Acad. Sci. USA 110 (17) (2013) 6712–6717. [32] Y. Shao, K. Taniguchi, K. Gurdziel, R.F. Townshend, X. Xue, K.M.A. Yong, J. Sang, J.R. Spence, D.L. Gumucio, J. Fu, Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche, Nat. Mater. 16 (4) (2017) 419–425. [33] C.P. Khoo, K. Micklem, S.M. Watt, A comparison of methods for quantifying angiogenesis in the Matrigel assay in vitro, Tissue Eng. C Meth. 17 (9) (2011) 895–906. [34] Y. Sun, K.M.A. Yong, L.G. Villa-Diaz, X. Zhang, W. Chen, R. Philson, S. Weng, H. Xu, P.H. Krebsbach, J. Fu, Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells, Nat. Mater. 13 (6) (2014) 599–604. [35] A. Dobin, C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, T.R. Gingeras, STAR: ultrafast universal RNA-seq aligner, Bioinformatics 29 (1) (2013) 15–21. [36] Y. Liao, G.K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics 30 (7) (2013) 923–930. [37] M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (12) (2014) 550. [38] N. Wang, R.K. Jain, T.T. Batchelor, New directions in anti-angiogenic therapy for glioblastoma, Neurotherapeutics 14 (2) (2017) 321–332. [39] D. Hambardzumyan, D.H. Gutmann, H. Kettenmann, The role of microglia and macrophages in glioma maintenance and progression, Nat. Neurosci. 19 (1) (2016) 20–27. [40] A. Sica, A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J. Clin. Invest. 122 (3) (2012) 787–795. [41] L. Yang, Y. Zhang, Tumor-associated macrophages: from basic research to clinical application, J. Hematol. Oncol. 10 (1) (2017) 58. [42] J. Krstic, J.F. Santibanez, Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells, Sci. World J. 2014 (2014) 521754. [43] A. Sica, P. Larghi, A. Mancino, L. Rubino, C. Porta, M.G. Totaro, M. Rimoldi, S.K. Biswas, P. Allavena, A. Mantovani, Macrophage polarization in tumour progression, Semin. Cancer Biol. 18 (5) (2008) 349–355. [44] C. Cluzel, F. Saltel, J. Lussi, F. Paulhe, B.A. Imhof, B. Wehrle-Haller, The mechanisms and dynamics of ανb3 integrin clustering in living cells, J. Cell Biol. 171 (2) (2005) 383–392. [45] P.R. Somanath, N.L. Malinin, T.V. Byzova, Cooperation between integrin ανb3 and VEGFR2 in angiogenesis, Angiogenesis 12 (2) (2009) 177–185. [46] M.S. Ahluwalia, J. de Groot, W.M. Liu, C.L. Gladson, Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies, Cancer Lett. 298 (2) (2010) 139–149. [47] H.-J. Choi, H. Zhang, H. Park, K.-S. Choi, H.-W. Lee, V. Agrawal, Y.-M. Kim, Y.-G. Kwon, Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2, Nat. Commun. 6 (2015) 6943. [48] J.S. Mo, H.W. Park, K.L. Guan, The Hippo signaling pathway in stem cell biology and cancer, EMBO Rep. 15 (6) (2014) 642–656. [49] B. Zhao, X. Wei, W. Li, R.S. Udan, Q. Yang, J. Kim, J. Xie, T. Ikenoue, J. Yu, L. Li, P. Zheng, K. Ye, A. Chinnaiyan, G. Halder, Z.C. Lai, K.L. Guan, Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control, Genes Dev. 21 (21) (2007) 2747–2761. [50] N.S. Vasudev, A.R. Reynolds, Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions, Angiogenesis 17 (3) (2014) 471–494. [51] D.A. Reardon, D. Cheresh, Cilengitide: a prototypic integrin inhibitor for the treatment of glioblastoma and other malignancies, Genes Cancer 2 (12) (2011) 1159–1165. [52] I.A. Ho, W.S. Shim, Contribution of the microenvironmental niche to glioblastoma heterogeneity, BioMed Res. Int. 2017 (2017) 9634172. [53] J. Han, C.A. Alvarez-Breckenridge, Q.-E. Wang, J. Yu, TGF-β signaling and its targeting for glioma treatment, Acad. J. Cancer Res. 5 (3) (2015) 945–955. [54] C. Neuzillet, A. Tijeras-Raballand, R. Cohen, J. Cros, S. Faivre, E. Raymond, A. deGramont, Targeting the TGFβ pathway for cancer therapy, Pharmacol. Therapeut. 147 (2015) 22–31. [55] N.S. Bayin, L. Ma, C. Thomas, R. Baitalmal, A. Sure, K. Fansiwala, M. Bustoros, J.G. Golfinos, D. Pacione, M. Snuderl, D. Zagzag, M.H. Barcellos-Hoff, D. Placantonakis, Patient-specific screening using high-grade glioma explants to determine potential radiosensitization by a TGF-β small molecule inhibitor, Neoplasia 18 (12) (2016) 795–805. [56] E. Binello, Z.A. Qadeer, H.P. Kothari, L. Emdad, I.M. Germano, Stemness of the CT-2A immunocompetent mouse brain tumor model: characterization in vitro, J. Cancer 3 (2012) 166–174. [57] R.J. Gilbertson, J.N. Rich, Making a tumour's bed: glioblastoma stem cells and the vascular niche, Nat. Rev. Cancer 7 (10) (2007) 733–736. [58] M. Anghelina, P. Krishnan, L. Moldovan, N.I. Moldovan, Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization, Stem Cell. Dev. 13 (6) (2004) 665–676. [59] W. Zhou, S.Q. Ke, Z. Huang, W. Flavahan, X. Fang, J. Paul, L. Wu, A.E. Sloan, R.E. McLendon, X. Li, J.N. Rich, S. Bao, Periostin secreted by glioblastoma stem cells recruits M2 tumor-associated macrophages and promotes malignant growth, Nat. Cell Biol. 17 (2) (2015) 170–182. [60] J. Lawler, Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth, J. Cell Mol. Med. 6 (1) (2002) 1–12. [61] G. Ferrari, B.D. Cook, V. Terushkin, G. Pintucci, P. Mignatti, Transforming growth factor-beta 1 (TGF-β1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis, J. Cell. Physiol. 219 (2) (2009) 449–458. [62] D. Gong, W. Shi, S.-J. Yi, H. Chen, J. Groffen, N. Heisterkamp, TGFβ signaling plays a critical role in promoting alternative macrophage activation, BMC Immunol. 13 (1) (2012) 31. After adding the missing reference [27], the last citation “…genes such as arg1, mcr2, mgl2, and ym1 in macrophages [61]” on page 177 should change to [62]. The authors would like to apologise for any inconvenience caused.
AB - The correct reference list is shown below. [1] G.T. Motz, G. Coukos, The parallel lives of angiogenesis and immunosuppression: cancer and other tales, Nat. Rev. Immunol. 11 (10) (2011) 702–711. [2] A.M. Swartz, Q.-J. Li, J.H. Sampson, Rindopepimut: a Promising Immunotherapeutic for the Treatment of Glioblastoma Multiforme, Immunotherapy 6 (6) (2014) 679–690. [3] M. Weller, T. Cloughesy, J.R. Perry, W. Wick, Standards of care for treatment of recurrent glioblastoma―are we there yet? Neuro Oncol. 15 (1) (2013) 4–27. [4] H. Miletic, S.P. Niclou, M. Johansson, R. Bjerkvig, Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms, Expert Opin. Ther. Targets 13 (4) (2009) 455–468. [5] E.R. Gerstner, T.T. Batchelor, Antiangiogenic therapy for glioblastoma, Cancer J. 18 (1) (2012) 45–50. [6] C. Jackson, J. Ruzevick, J. Phallen, Z. Belcaid, M. Lim, Challenges in immuno-therapy presented by the glioblastoma multiforme microenvironment, Clin. Dev. Immunol. 2011 (2011) 732413. [7] A.A. Thomas, M.S. Ernstoff, C.E. Fadul, Immunotherapy for the treatment of glioblastoma, Cancer J. 18 (1) (2012) 59–68. [8] D. Hambardzumyan, G. Bergers, Glioblastoma: defining tumor niches, Trends Cancer 1 (4) (2015) 252–265. [9] N.S. Agrawal, R. Miller Jr., R. Lal, H. Mahanti, Y.N. Dixon-Mah, M.L. DeCandio, W.A. Vandergrift III, A.K. Varma, S.J. Patel, N.L. Banik, S.M. Lindhorst, P. Giglio, A. Das, Current studies of immunotherapy on glioblastoma, J. Neurol. Neurosci. 1 (1) (2014) 21000104. [10] E.A. Vega, M.W. Graner, J.H. Sampson, Combating immunosuppression in glioma, Future Oncol. 4 (3) (2008) 433–442. [11] E. di Tomaso, M. Snuderl, W.S. Kamoun, D.G. Duda, P.K. Auluck, L. Fazlollahi, O.C. Andronesi, M.P. Frosch, P.Y. Wen, S.R. Plotkin, E.T. Hedley-Whyte, A.G. Sorensen, T.T. Batchelor, R.K. Jain, Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape, Canc. Res. 71 (1) (2011) 19–28. [12] C. Lu-Emerson, M. Snuderl, N.D. Kirkpatrick, J. Goveia, C. Davidson, Y. Huang, L. Riedemann, J. Taylor, P. Ivy, D.G. Duda, M. Ancukiewicz, S.R. Plotkin, A.S. Chi, E.R. Gerstner, A.F. Eichler, J. Dietrich, A.O. Stemmer-Rachamimov, T.T. Batchelor, R.K. Jain, Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma, Neuro Oncol. 15 (8) (2013) 1079–1087. [13] C. Humpel, Organotypic brain slice cultures: a review, Neuroscience 305 (2015) 86–98. [14] P. DelNero, M. Lane, S.S. Verbridge, B. Kwee, P. Kermani, B. Hempstead, A. Stroock, C. Fischbach, 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways, Biomaterials 55 (2015) 110–118. [15] D. Ribatti, E. Crivellato, Immune cells and angiogenesis, J. Cell Mol. Med. 13 (9a) (2009) 2822–2833. [16] J.-L. Sun, K. Jiao, L.-N. Niu, Y. Jiao, Q. Song, L.-j. Shen, F.R. Tay, J.-h. Chen, Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration, Biomaterials 113 (2017) 203–216. [17] I. Daphu, T. Sundstrøm, S. Horn, P.C. Huszthy, S.P. Niclou, P.Ø. Sakariassen, H. Immervoll, H. Miletic, R. Bjerkvig, F. Thorsen, In vivo animal models for studying brain metastasis: value and limitations, Clin. Exp. Metastasis 30 (5) (2013) 695–710. [18] F. Shimizu, K.E. Hovinga, M. Metzner, D. Soulet, V. Tabar, Organotypic explant culture of glioblastoma multiforme and subsequent single-cell suspension, Curr. Protoc. Stem Cell Biol. (Chapter 3) (2011). Unit 3.5. [19] C. Liu, X. Cui, T.M. Ackermann, V. Flamini, W. Chen, A.B. Castillo, Osteoblast-derived paracrine factors regulate angiogenesis in response to mechanical stimulation, Integr. Biosci. 8 (7) (2016) 785–794. [20] Y. Zheng, J. Chen, M. Craven, N.W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J.A. López, A.D. Stroock, In vitro microvessels for the study of angiogenesis and thrombosis, Proc. Natl. Acad. Sci. USA 109 (24) (2012) 9342–9347. [21] H. Ungefroren, S. Sebens, D. Seidl, H. Lehnert, R. Hass, Interaction of tumor cells with the microenvironment, Cell Commun. Signal. 9 (1) (2011) 18. [22] A. Fantin, J.M. Vieira, G. Gestri, L. Denti, Q. Schwarz, S. Prykhozhij, F. Peri, S.W. Wilson, C. Ruhrberg, Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell in-duction, Blood 116 (5) (2010) 829–840. [23] A. Rape, B. Ananthanarayanan, S. Kumar, Engineering strategies to mimic the glioblastoma microenvironment, Adv. Drug Deliv. Rev. 79 (2014) 172–183. [24] O. Schnell, B. Krebs, E. Wagner, A. Romagna, A.J. Beer, S.J. Grau, N. Thon, C. Goetz, H.A. Kretzschmar, J.C. Tonn, R.H. Goldbrunner, Expression of integrin αvb3 in gliomas correlates with tumor grade and is not restricted to tumor vasculature, Brain Pathol. 18 (3) (2008) 378–386. [25] M.G. Overstreet, A. Gaylo, B.R. Angermann, A. Hughson, Y.-M. Hyun, K. Lambert, M. Acharya, A.C. Billroth-MacLurg, A.F. Rosenberg, D.J. Topham, H. Yagita, M. Kim, A. Lacy-Hulbert, M. Meier-Schellersheim, D.J. Fowell, Inflammation-induced interstitial migration of effector CD4þT cells is dependent on integrin [alpha] V, Nat. Immunol. 14 (9) (2013) 949–958. [26] S.M. Weis, D.A. Cheresh, αV integrins in angiogenesis and cancer, Cold Spring Harb. Perspect. Med. 1 (1) (2011), a006478. [27] Y. Feng, Q. Li, D. Wu, Y. Niu, C. Yang, L. Dong, C. Wang, A macrophage-activating, injectable hydrogel to sequester endogenous growth factors for in situ angiogenesis, Biomaterials 134 (2017) 128–142. [28] N. Jetten, S. Verbruggen, M.J. Gijbels, M.J. Post, M.P. De Winther, M.M. Donners, Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo, Angiogenesis 17 (1) (2014) 109–118. [29] Y.F. Tian, H. Ahn, R.S. Schneider, S.N. Yang, L. Roman-Gonzalez, A.M. Melnick, L. Cerchietti, A. Singh, Integrin-specific hydrogels as adaptable tumor organoids for malignant B and T cells, Biomaterials 73 (2015) 110–119. [30] G.A. Monteiro, A.V. Fernandes, H.G. Sundararaghavan, D.I. Shreiber, Positively and negatively modulating cell adhesion to type I collagen via peptide grafting, Tissue Eng. 17 (13e14) (2009) 1663–1673. [31] D.-H.T. Nguyen, S.C. Stapleton, M.T. Yang, S.S. Cha, C.K. Choi, P.A. Galie, C.S. Chen, Biomimetic model to reconstitute angiogenic sprouting morpho-genesis in vitro, Proc. Natl. Acad. Sci. USA 110 (17) (2013) 6712–6717. [32] Y. Shao, K. Taniguchi, K. Gurdziel, R.F. Townshend, X. Xue, K.M.A. Yong, J. Sang, J.R. Spence, D.L. Gumucio, J. Fu, Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche, Nat. Mater. 16 (4) (2017) 419–425. [33] C.P. Khoo, K. Micklem, S.M. Watt, A comparison of methods for quantifying angiogenesis in the Matrigel assay in vitro, Tissue Eng. C Meth. 17 (9) (2011) 895–906. [34] Y. Sun, K.M.A. Yong, L.G. Villa-Diaz, X. Zhang, W. Chen, R. Philson, S. Weng, H. Xu, P.H. Krebsbach, J. Fu, Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells, Nat. Mater. 13 (6) (2014) 599–604. [35] A. Dobin, C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, T.R. Gingeras, STAR: ultrafast universal RNA-seq aligner, Bioinformatics 29 (1) (2013) 15–21. [36] Y. Liao, G.K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics 30 (7) (2013) 923–930. [37] M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (12) (2014) 550. [38] N. Wang, R.K. Jain, T.T. Batchelor, New directions in anti-angiogenic therapy for glioblastoma, Neurotherapeutics 14 (2) (2017) 321–332. [39] D. Hambardzumyan, D.H. Gutmann, H. Kettenmann, The role of microglia and macrophages in glioma maintenance and progression, Nat. Neurosci. 19 (1) (2016) 20–27. [40] A. Sica, A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, J. Clin. Invest. 122 (3) (2012) 787–795. [41] L. Yang, Y. Zhang, Tumor-associated macrophages: from basic research to clinical application, J. Hematol. Oncol. 10 (1) (2017) 58. [42] J. Krstic, J.F. Santibanez, Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells, Sci. World J. 2014 (2014) 521754. [43] A. Sica, P. Larghi, A. Mancino, L. Rubino, C. Porta, M.G. Totaro, M. Rimoldi, S.K. Biswas, P. Allavena, A. Mantovani, Macrophage polarization in tumour progression, Semin. Cancer Biol. 18 (5) (2008) 349–355. [44] C. Cluzel, F. Saltel, J. Lussi, F. Paulhe, B.A. Imhof, B. Wehrle-Haller, The mechanisms and dynamics of ανb3 integrin clustering in living cells, J. Cell Biol. 171 (2) (2005) 383–392. [45] P.R. Somanath, N.L. Malinin, T.V. Byzova, Cooperation between integrin ανb3 and VEGFR2 in angiogenesis, Angiogenesis 12 (2) (2009) 177–185. [46] M.S. Ahluwalia, J. de Groot, W.M. Liu, C.L. Gladson, Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies, Cancer Lett. 298 (2) (2010) 139–149. [47] H.-J. Choi, H. Zhang, H. Park, K.-S. Choi, H.-W. Lee, V. Agrawal, Y.-M. Kim, Y.-G. Kwon, Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2, Nat. Commun. 6 (2015) 6943. [48] J.S. Mo, H.W. Park, K.L. Guan, The Hippo signaling pathway in stem cell biology and cancer, EMBO Rep. 15 (6) (2014) 642–656. [49] B. Zhao, X. Wei, W. Li, R.S. Udan, Q. Yang, J. Kim, J. Xie, T. Ikenoue, J. Yu, L. Li, P. Zheng, K. Ye, A. Chinnaiyan, G. Halder, Z.C. Lai, K.L. Guan, Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control, Genes Dev. 21 (21) (2007) 2747–2761. [50] N.S. Vasudev, A.R. Reynolds, Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions, Angiogenesis 17 (3) (2014) 471–494. [51] D.A. Reardon, D. Cheresh, Cilengitide: a prototypic integrin inhibitor for the treatment of glioblastoma and other malignancies, Genes Cancer 2 (12) (2011) 1159–1165. [52] I.A. Ho, W.S. Shim, Contribution of the microenvironmental niche to glioblastoma heterogeneity, BioMed Res. Int. 2017 (2017) 9634172. [53] J. Han, C.A. Alvarez-Breckenridge, Q.-E. Wang, J. Yu, TGF-β signaling and its targeting for glioma treatment, Acad. J. Cancer Res. 5 (3) (2015) 945–955. [54] C. Neuzillet, A. Tijeras-Raballand, R. Cohen, J. Cros, S. Faivre, E. Raymond, A. deGramont, Targeting the TGFβ pathway for cancer therapy, Pharmacol. Therapeut. 147 (2015) 22–31. [55] N.S. Bayin, L. Ma, C. Thomas, R. Baitalmal, A. Sure, K. Fansiwala, M. Bustoros, J.G. Golfinos, D. Pacione, M. Snuderl, D. Zagzag, M.H. Barcellos-Hoff, D. Placantonakis, Patient-specific screening using high-grade glioma explants to determine potential radiosensitization by a TGF-β small molecule inhibitor, Neoplasia 18 (12) (2016) 795–805. [56] E. Binello, Z.A. Qadeer, H.P. Kothari, L. Emdad, I.M. Germano, Stemness of the CT-2A immunocompetent mouse brain tumor model: characterization in vitro, J. Cancer 3 (2012) 166–174. [57] R.J. Gilbertson, J.N. Rich, Making a tumour's bed: glioblastoma stem cells and the vascular niche, Nat. Rev. Cancer 7 (10) (2007) 733–736. [58] M. Anghelina, P. Krishnan, L. Moldovan, N.I. Moldovan, Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization, Stem Cell. Dev. 13 (6) (2004) 665–676. [59] W. Zhou, S.Q. Ke, Z. Huang, W. Flavahan, X. Fang, J. Paul, L. Wu, A.E. Sloan, R.E. McLendon, X. Li, J.N. Rich, S. Bao, Periostin secreted by glioblastoma stem cells recruits M2 tumor-associated macrophages and promotes malignant growth, Nat. Cell Biol. 17 (2) (2015) 170–182. [60] J. Lawler, Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth, J. Cell Mol. Med. 6 (1) (2002) 1–12. [61] G. Ferrari, B.D. Cook, V. Terushkin, G. Pintucci, P. Mignatti, Transforming growth factor-beta 1 (TGF-β1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis, J. Cell. Physiol. 219 (2) (2009) 449–458. [62] D. Gong, W. Shi, S.-J. Yi, H. Chen, J. Groffen, N. Heisterkamp, TGFβ signaling plays a critical role in promoting alternative macrophage activation, BMC Immunol. 13 (1) (2012) 31. After adding the missing reference [27], the last citation “…genes such as arg1, mcr2, mgl2, and ym1 in macrophages [61]” on page 177 should change to [62]. The authors would like to apologise for any inconvenience caused.
UR - http://www.scopus.com/inward/record.url?scp=85133297521&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85133297521&partnerID=8YFLogxK
U2 - 10.1016/j.biomaterials.2022.121667
DO - 10.1016/j.biomaterials.2022.121667
M3 - Comment/debate
AN - SCOPUS:85133297521
SN - 0142-9612
VL - 287
JO - Biomaterials
JF - Biomaterials
M1 - 121667
ER -