TY - JOUR
T1 - Critical limit of lattice gauge theory
AU - Zwanziger, Daniel
N1 - Funding Information:
* Research supported in part by the National Science Foundation under grant PHY 90-17585.
PY - 1992/7/13
Y1 - 1992/7/13
N2 - The critical limit of lattice gauge theory is studied in a gauge which is optimized to make all link variables as close to unity as possible. Hadronic mass arises as the thermodynamic parameter conjugate to the constraint imposed by the restriction to the fundamental modular region (no Gribov copies). This parameter, of dimension (mass)4, multiplies a new term in the action which is sufficiently soft that renormalizability is preserved. The new term is made local by integration over auxiliary fields, and the resulting perturbation theory differs from the Faddeev-Popov theory by terms which are finite in every order. The renormalized theory contains a single dimensionful parameter Λh, which sets the hadronic mass scale. To all orders in renormalized perturbation theory, the gluon propagator vanishes like k2 at k = 0, and has a pole at imaginary (k2) = const. × Λh2 that describes confined gluons. Various predictions may be verified by Monte Carlo simulation and numerical gauge fixing.
AB - The critical limit of lattice gauge theory is studied in a gauge which is optimized to make all link variables as close to unity as possible. Hadronic mass arises as the thermodynamic parameter conjugate to the constraint imposed by the restriction to the fundamental modular region (no Gribov copies). This parameter, of dimension (mass)4, multiplies a new term in the action which is sufficiently soft that renormalizability is preserved. The new term is made local by integration over auxiliary fields, and the resulting perturbation theory differs from the Faddeev-Popov theory by terms which are finite in every order. The renormalized theory contains a single dimensionful parameter Λh, which sets the hadronic mass scale. To all orders in renormalized perturbation theory, the gluon propagator vanishes like k2 at k = 0, and has a pole at imaginary (k2) = const. × Λh2 that describes confined gluons. Various predictions may be verified by Monte Carlo simulation and numerical gauge fixing.
UR - http://www.scopus.com/inward/record.url?scp=0001362946&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001362946&partnerID=8YFLogxK
U2 - 10.1016/0550-3213(92)90608-E
DO - 10.1016/0550-3213(92)90608-E
M3 - Article
AN - SCOPUS:0001362946
SN - 0550-3213
VL - 378
SP - 525
EP - 590
JO - Nuclear Physics, Section B
JF - Nuclear Physics, Section B
IS - 3
ER -