Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control

Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal Hammoud, Maximilien Naveau, Justin Carpentier, Ludovic Righetti, Sethu Vijayakumar, Nicolas Mansard

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We introduce Crocoddyl (Contact RObot COntrol by Differential DYnamic Library), an open-source framework tailored for efficient multi-contact optimal control. Crocoddyl efficiently computes the state trajectory and the control policy for a given predefined sequence of contacts. Its efficiency is due to the use of sparse analytical derivatives, exploitation of the problem structure, and data sharing. It employs differential geometry to properly describe the state of any geometrical system, e.g. floating-base systems. Additionally, we propose a novel optimal control algorithm called Feasibility-driven Differential Dynamic Programming (FDDP). Our method does not add extra decision variables which often increases the computation time per iteration due to factorization. FDDP shows a greater globalization strategy compared to classical Differential Dynamic Programming (DDP) algorithms. Concretely, we propose two modifications to the classical DDP algorithm. First, the backward pass accepts infeasible state-control trajectories. Second, the rollout keeps the gaps open during the early exploratory iterations (as expected in multipleshooting methods with only equality constraints). We showcase the performance of our framework using different tasks. With our method, we can compute highly-dynamic maneuvers (e.g. jumping, front-flip) within few milliseconds.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Robotics and Automation, ICRA 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2536-2542
Number of pages7
ISBN (Electronic)9781728173955
DOIs
StatePublished - May 2020
Event2020 IEEE International Conference on Robotics and Automation, ICRA 2020 - Paris, France
Duration: May 31 2020Aug 31 2020

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2020 IEEE International Conference on Robotics and Automation, ICRA 2020
CountryFrance
CityParis
Period5/31/208/31/20

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control'. Together they form a unique fingerprint.

Cite this