TY - GEN
T1 - Crowdsourcing with multi-dimensional trust
AU - Liu, Xiangyang
AU - He, He
AU - Baras, John S.
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/9/14
Y1 - 2015/9/14
N2 - We consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Finally, we evaluate our model on real-world datasets and demonstrate that our model is superior to state-of-the-art and the two extended models have even better performance. In addition, our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them.
AB - We consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Finally, we evaluate our model on real-world datasets and demonstrate that our model is superior to state-of-the-art and the two extended models have even better performance. In addition, our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them.
UR - http://www.scopus.com/inward/record.url?scp=84960492937&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84960492937&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84960492937
T3 - 2015 18th International Conference on Information Fusion, Fusion 2015
SP - 574
EP - 581
BT - 2015 18th International Conference on Information Fusion, Fusion 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th International Conference on Information Fusion, Fusion 2015
Y2 - 6 July 2015 through 9 July 2015
ER -