Cryptic carbon and sulfur cycling between surface ocean plankton

Bryndan P. Durham, Shalabh Sharma, Haiwei Luo, Christa B. Smith, Shady A. Amin, Sara J. Bender, Stephen P. Dearth, Benjamin A.S. Van Mooy, Shawn R. Campagna, Elizabeth B. Kujawinski, E. Virginia Armbrust, Mary Ann Moran

Research output: Contribution to journalArticlepeer-review


About half the carbon fixed by phytoplankton in the ocean is taken up and metabolized by marine bacteria, a transfer that is mediated through the seawater dissolved organic carbon (DOC) pool. The chemical complexity of marine DOC, along with a poor understanding of which compounds form the basis of trophic interactions between bacteria and phytoplankton, have impeded efforts to identify key currencies of this carbon cycle link. Here, we used transcriptional patterns in a bacterial-diatom model system based on vitamin B12 auxotrophy as a sensitive assay for metabolite exchange between marine plankton. The most highly up-regulated genes (up to 374-fold) by a marine Roseobacter clade bacterium when cocultured with the diatom Thalassiosira pseudonana were those encoding the transport and catabolism of 2,3- dihydroxypropane-1-sulfonate (DHPS). This compound has no currently recognized role in the marine microbial food web. As the genes for DHPS catabolism have limited distribution among bacterial taxa, T. pseudonana may use this sulfonate for targeted feeding of beneficial associates. Indeed, DHPS was both a major component of the T. pseudonana cytosol and an abundant microbial metabolite in a diatom bloom in the eastern North Pacific Ocean. Moreover, transcript analysis of the North Pacific samples provided evidence of DHPS catabolism by Roseobacter populations. Other such biogeochemically important metabolites may be common in the ocean but difficult to discriminate against the complex chemical background of seawater. Bacterial transformation of this diatom-derived sulfonate represents a previously unidentified and likely sizeable link in both the marine carbon and sulfur cycles.

Original languageEnglish (US)
Pages (from-to)453-457
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number2
StatePublished - Jan 13 2015


  • Bacteria
  • DHPS
  • Diatoms
  • Sulfonates
  • Vitamin B12

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Cryptic carbon and sulfur cycling between surface ocean plankton'. Together they form a unique fingerprint.

Cite this