TY - JOUR
T1 - Cue-dependent effects of VR experience on motion-in-depth sensitivity
AU - Fulvio, Jacqueline M.
AU - Ji, Mohan
AU - Thompson, Lowell
AU - Rosenberg, Ari
AU - Rokers, Bas
N1 - Publisher Copyright:
© 2020 Fulvio et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020
Y1 - 2020
N2 - The visual system exploits multiple signals, including monocular and binocular cues, to determine the motion of objects through depth. In the laboratory, sensitivity to different three-dimensional (3D) motion cues varies across observers and is often weak for binocular cues. However, laboratory assessments may reflect factors beyond inherent perceptual sensitivity. For example, the appearance of weak binocular sensitivity may relate to extensive prior experience with two-dimensional (2D) displays in which binocular cues are not informative. Here we evaluated the impact of experience on motion-in-depth (MID) sensitivity in a virtual reality (VR) environment. We tested a large cohort of observers who reported having no prior VR experience and found that binocular cue sensitivity was substantially weaker than monocular cue sensitivity. As expected, sensitivity was greater when monocular and binocular cues were presented together than in isolation. Surprisingly, the addition of motion parallax signals appeared to cause observers to rely almost exclusively on monocular cues. As observers gained experience in the VR task, sensitivity to monocular and binocular cues increased. Notably, most observers were unable to distinguish the direction of MID based on binocular cues above chance level when tested early in the experiment, whereas most showed statistically significant sensitivity to binocular cues when tested late in the experiment. This result suggests that observers may discount binocular cues when they are first encountered in a VR environment. Laboratory assessments may thus underestimate the sensitivity of inexperienced observers to MID, especially for binocular cues.
AB - The visual system exploits multiple signals, including monocular and binocular cues, to determine the motion of objects through depth. In the laboratory, sensitivity to different three-dimensional (3D) motion cues varies across observers and is often weak for binocular cues. However, laboratory assessments may reflect factors beyond inherent perceptual sensitivity. For example, the appearance of weak binocular sensitivity may relate to extensive prior experience with two-dimensional (2D) displays in which binocular cues are not informative. Here we evaluated the impact of experience on motion-in-depth (MID) sensitivity in a virtual reality (VR) environment. We tested a large cohort of observers who reported having no prior VR experience and found that binocular cue sensitivity was substantially weaker than monocular cue sensitivity. As expected, sensitivity was greater when monocular and binocular cues were presented together than in isolation. Surprisingly, the addition of motion parallax signals appeared to cause observers to rely almost exclusively on monocular cues. As observers gained experience in the VR task, sensitivity to monocular and binocular cues increased. Notably, most observers were unable to distinguish the direction of MID based on binocular cues above chance level when tested early in the experiment, whereas most showed statistically significant sensitivity to binocular cues when tested late in the experiment. This result suggests that observers may discount binocular cues when they are first encountered in a VR environment. Laboratory assessments may thus underestimate the sensitivity of inexperienced observers to MID, especially for binocular cues.
UR - http://www.scopus.com/inward/record.url?scp=85081138661&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85081138661&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0229929
DO - 10.1371/journal.pone.0229929
M3 - Article
C2 - 32150569
AN - SCOPUS:85081138661
SN - 1932-6203
VL - 15
JO - PloS one
JF - PloS one
IS - 3
M1 - e0229929
ER -