TY - JOUR
T1 - Cutoff phenomena for random walks on random regular graphs
AU - Lubetzky, Eyal
AU - Sly, Allan
PY - 2010/6
Y1 - 2010/6
N2 - The cutoff phenomenon describes a sharp transition in the convergence of a family of ergodic finite Markov chains to equilibrium. Many natural families of chains are believed to exhibit cutoff, and yet establishing this fact is often extremely challenging. An important such family of chains is the random walk on g(n, d), a random d-regular graph on n vertices. It is well known that almost every such graph for d ≥ 3 is an expander, and even essentially Ramanujan, implying a mixing time of O(log n). According to a conjecture of Peres, the simple random walk on g(n, d) for such d should then exhibit cutoff with high probability (whp). As a special case of this, Durrett conjectured that the mixing time of the lazy random walk on a random 3-regular graph is whp (6 + o(1)) log2 n. In this work we confirm the above conjectures and establish cutoff in total-variation, its location, and its optimal window, both for simple and for non-backtracking random walks on g(n, d). Namely, for any fixed d ≥ 3, the simple random walk on g(n, d) whp has cutoff at (d/(d - 2)) logd-1 n with window order √log n. Surprisingly, the non-backtracking random walk on g(n, d) whp has cutoff already at logd-1 n with constant window order. We further extend these results to g(n, d) for any d = no (1) that grows with n (beyond which the mixing time is O(1)), where we establish concentration of the mixing time on one of two consecutive integers.
AB - The cutoff phenomenon describes a sharp transition in the convergence of a family of ergodic finite Markov chains to equilibrium. Many natural families of chains are believed to exhibit cutoff, and yet establishing this fact is often extremely challenging. An important such family of chains is the random walk on g(n, d), a random d-regular graph on n vertices. It is well known that almost every such graph for d ≥ 3 is an expander, and even essentially Ramanujan, implying a mixing time of O(log n). According to a conjecture of Peres, the simple random walk on g(n, d) for such d should then exhibit cutoff with high probability (whp). As a special case of this, Durrett conjectured that the mixing time of the lazy random walk on a random 3-regular graph is whp (6 + o(1)) log2 n. In this work we confirm the above conjectures and establish cutoff in total-variation, its location, and its optimal window, both for simple and for non-backtracking random walks on g(n, d). Namely, for any fixed d ≥ 3, the simple random walk on g(n, d) whp has cutoff at (d/(d - 2)) logd-1 n with window order √log n. Surprisingly, the non-backtracking random walk on g(n, d) whp has cutoff already at logd-1 n with constant window order. We further extend these results to g(n, d) for any d = no (1) that grows with n (beyond which the mixing time is O(1)), where we establish concentration of the mixing time on one of two consecutive integers.
UR - http://www.scopus.com/inward/record.url?scp=77957796100&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957796100&partnerID=8YFLogxK
U2 - 10.1215/00127094-2010-029
DO - 10.1215/00127094-2010-029
M3 - Article
AN - SCOPUS:77957796100
SN - 0012-7094
VL - 153
SP - 475
EP - 510
JO - Duke Mathematical Journal
JF - Duke Mathematical Journal
IS - 3
ER -