TY - JOUR
T1 - Cyanobacterial ecology across environmental gradients and spatial scales in China's hot and cold deserts
AU - Warren-Rhodes, Kimberley A.
AU - Rhodes, Kevin L.
AU - Boyle, Linda Ng
AU - Pointing, Stephen B.
AU - Chen, Yong
AU - Liu, Shuangjiang
AU - Zhuo, Peijin
AU - McKay, Christopher P.
PY - 2007/9
Y1 - 2007/9
N2 - Lithic photoautotrophic communities function as principal primary producers in the world's driest deserts, yet many aspects of their ecology remain unknown. This is particularly true for Asia, where some of the Earth's oldest and driest deserts occur. Using methods derived from plant landscape ecology, we measured the abundance and spatial distribution of cyanobacterial colonization on quartz stony pavement across environmental gradients of rainfall and temperature in the isolated Taklimakan and Qaidam Basin deserts of western China. Colonization within available habitat ranged from 0.37±0.16% to 12.6±1.8%, with cold dry desert sites exhibiting the lowest abundance. Variation between sites was most strongly correlated with moisture-related variables and was independent of substrate availability. Cyanobacterial communities were spatially aggregated at multiple scales in patterns distinct from the underlying rock pattern. Site-level differences in cyanobacterial spatial pattern (e.g. mean inter-patch distance) were linked with rainfall, whereas patchiness within sites was correlated with local geology (greater colonization frequency of large rocks) and biology (dispersal during rainfall). We suggest that cyanobacterial patchiness may also in part be self-organized - that is, an outcome of soil water-biological feedbacks. We propose that landscape ecology concepts and models linking desert vegetation, biological feedbacks and ecohydrological processes are applicable to microbial communities.
AB - Lithic photoautotrophic communities function as principal primary producers in the world's driest deserts, yet many aspects of their ecology remain unknown. This is particularly true for Asia, where some of the Earth's oldest and driest deserts occur. Using methods derived from plant landscape ecology, we measured the abundance and spatial distribution of cyanobacterial colonization on quartz stony pavement across environmental gradients of rainfall and temperature in the isolated Taklimakan and Qaidam Basin deserts of western China. Colonization within available habitat ranged from 0.37±0.16% to 12.6±1.8%, with cold dry desert sites exhibiting the lowest abundance. Variation between sites was most strongly correlated with moisture-related variables and was independent of substrate availability. Cyanobacterial communities were spatially aggregated at multiple scales in patterns distinct from the underlying rock pattern. Site-level differences in cyanobacterial spatial pattern (e.g. mean inter-patch distance) were linked with rainfall, whereas patchiness within sites was correlated with local geology (greater colonization frequency of large rocks) and biology (dispersal during rainfall). We suggest that cyanobacterial patchiness may also in part be self-organized - that is, an outcome of soil water-biological feedbacks. We propose that landscape ecology concepts and models linking desert vegetation, biological feedbacks and ecohydrological processes are applicable to microbial communities.
KW - Hyperarid desert
KW - Hypolithic
KW - Landscape ecology
KW - Patchiness
KW - Photoautotrophs
KW - Trigger-transfer-response-pulse framework
UR - http://www.scopus.com/inward/record.url?scp=34547830888&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547830888&partnerID=8YFLogxK
U2 - 10.1111/j.1574-6941.2007.00351.x
DO - 10.1111/j.1574-6941.2007.00351.x
M3 - Article
C2 - 17672851
AN - SCOPUS:34547830888
SN - 0168-6496
VL - 61
SP - 470
EP - 482
JO - FEMS Microbiology Ecology
JF - FEMS Microbiology Ecology
IS - 3
ER -