TY - JOUR
T1 - Cycle factors and renewal theory
AU - Kahn, Jeff
AU - Lubetzky, Eyal
AU - Wormald, Nicholas
N1 - Publisher Copyright:
© 2015 Wiley Periodicals, Inc.
PY - 2017/2/1
Y1 - 2017/2/1
N2 - For which values of k does a uniformly chosen 3-regular graph G on n vertices typically contain n/k vertex-disjoint k-cycles (a k-cycle factor)? To date, this has been answered for k = n and for k ≪ log n; the former, the Hamiltonicity problem, was finally answered in the affirmative by Robinson and Wormald in 1992, while the answer in the latter case is negative since with high probability (w.h.p.) most vertices do not lie on k-cycles. A major role in our study of this problem is played by renewal processes without replacement, where one wishes to estimate the probability that in a uniform permutation of a given set of positive integers, the partial sums hit a designated target integer. Using sharp tail estimates for these renewal processes, which may be of independent interest, we settle the cycle factor problem completely: the “threshold” for a k-cycle factor in G as above is κ0 log2 n with K0 = [1 ̶ 1/2 log2 3]̵1 ͌ 4.82. To be precise, G contains a k-cycle factor w.h.p. if K ≥ k0 (n) : = ┌ K0 log2(2n/e)┐ and w.h.p. does not contain one if k < K0(n)̶log2 n/n. Thus, for most values of n the threshold concentrates on the single integer K0(n). As a byproduct, we confirm the “comb conjecture,” an old problem concerning the embedding of certain spanning trees in the random graph G (n,p).
AB - For which values of k does a uniformly chosen 3-regular graph G on n vertices typically contain n/k vertex-disjoint k-cycles (a k-cycle factor)? To date, this has been answered for k = n and for k ≪ log n; the former, the Hamiltonicity problem, was finally answered in the affirmative by Robinson and Wormald in 1992, while the answer in the latter case is negative since with high probability (w.h.p.) most vertices do not lie on k-cycles. A major role in our study of this problem is played by renewal processes without replacement, where one wishes to estimate the probability that in a uniform permutation of a given set of positive integers, the partial sums hit a designated target integer. Using sharp tail estimates for these renewal processes, which may be of independent interest, we settle the cycle factor problem completely: the “threshold” for a k-cycle factor in G as above is κ0 log2 n with K0 = [1 ̶ 1/2 log2 3]̵1 ͌ 4.82. To be precise, G contains a k-cycle factor w.h.p. if K ≥ k0 (n) : = ┌ K0 log2(2n/e)┐ and w.h.p. does not contain one if k < K0(n)̶log2 n/n. Thus, for most values of n the threshold concentrates on the single integer K0(n). As a byproduct, we confirm the “comb conjecture,” an old problem concerning the embedding of certain spanning trees in the random graph G (n,p).
UR - http://www.scopus.com/inward/record.url?scp=84940990158&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84940990158&partnerID=8YFLogxK
U2 - 10.1002/cpa.21613
DO - 10.1002/cpa.21613
M3 - Article
AN - SCOPUS:84940990158
SN - 0010-3640
VL - 70
SP - 289
EP - 339
JO - Communications on Pure and Applied Mathematics
JF - Communications on Pure and Applied Mathematics
IS - 2
ER -