@inproceedings{636573924daa413cadc5df76edfa5372,
title = "DACMA: Designing space ordering optimizations to scalably manage aerial images",
abstract = "Aerial images are a special class of remote sensing images, as they are intentionally collected with a high degree of overlap. This high degree of overlap complicates existing index strategies such as R-tree and Space Filling Curve (SFC) based index techniques due to complications in space splitting, granularity of the grid cells and excessive duplication of image object identifiers (IOIs). However, SFC based space ordering can be modified to provide scalable management of overlapping aerial images. This involves overcoming similar IOIs in adjacent grid cells, which would naturally occur in SFC based grids with such data. IOI duplication can be minimized by merging adjacent grid cells through the proposed 'Designing Adjacent Cell Merge Algorithm' (DACMA). This work focuses on establishing a proper adjacent cell merge metric and merge percentage value. Using a highly scalable, distributed HBase cluster for both a single aerial mapping project, and multiple aerial mapping projects, experiments evaluated Jaccard Similarity (JS) and Percentage of Overlap (PO) merge metrics. JS had significant advantages: (i) generating smaller merged regions and (ii) obtaining over 21% and 36% improvement in reducing query response times compared to PO. As a result, JS is proposed for the merge metric for DACMA. For the merge percentage two considerations were dominant: (i) substantial storage reductions with respect to both straight forward SFC-based cell space indexing and 4SA based indexing, and (ii) minimal impact on the query response time. The proposed merge percentage value was selected to optimize the storage (i.e. space) needs and response time (i.e. time) herein named the {"}Space-Time Trade-off Optimization Percentage{"}value (or STOP value) is presented.",
keywords = "aerial images, scalability, space filling curves, space-time trade-off",
author = "Hewage, {Chamin Nalinda Lokugam} and Debra Laefer and Michela Bertolotto and Vo, {Anh Vu} and Le-Khac, {Nhien An}",
note = "Publisher Copyright: {\textcopyright} 2022 IEEE.; 2022 IEEE International Conference on Big Data, Big Data 2022 ; Conference date: 17-12-2022 Through 20-12-2022",
year = "2022",
doi = "10.1109/BigData55660.2022.10020833",
language = "English (US)",
series = "Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "4916--4925",
editor = "Shusaku Tsumoto and Yukio Ohsawa and Lei Chen and {Van den Poel}, Dirk and Xiaohua Hu and Yoichi Motomura and Takuya Takagi and Lingfei Wu and Ying Xie and Akihiro Abe and Vijay Raghavan",
booktitle = "Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022",
}