Data-driven estimation of sinusoid frequencies

Gautier Izacard, Sreyas Mohan, Carlos Fernandez-Granda

Research output: Contribution to journalConference articlepeer-review


Frequency estimation is a fundamental problem in signal processing, with applications in radar imaging, underwater acoustics, seismic imaging, and spectroscopy. The goal is to estimate the frequency of each component in a multisinusoidal signal from a finite number of noisy samples. A recent machine-learning approach uses a neural network to output a learned representation with local maxima at the position of the frequency estimates. In this work, we propose a novel neural-network architecture that produces a significantly more accurate representation, and combine it with an additional neural-network module trained to detect the number of frequencies. This yields a fast, fully-automatic method for frequency estimation that achieves state-of-the-art results. In particular, it outperforms existing techniques by a substantial margin at medium-to-high noise levels.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
StatePublished - 2019
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: Dec 8 2019Dec 14 2019

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Data-driven estimation of sinusoid frequencies'. Together they form a unique fingerprint.

Cite this