DECADE: Towards Designing Efficient-yet-Accurate Distance Estimation Modules for Collision Avoidance in Mobile Advanced Driver Assistance Systems

Muhammad Zaeem Shahzad, Muhammad Abdullah Hanif, Muhammad Shafique

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The proliferation of smartphones and other mobile devices provides a unique opportunity to make Advanced Driver Assistance Systems (ADAS) accessible to everyone in the form of an application empowered by low-cost Machine/Deep Learning (ML/DL) models to enhance road safety. For the critical feature of Collision Avoidance in Mobile ADAS, lightweight Deep Neural Networks (DNN) for object detection exist, but conventional pixel-wise depth/distance estimation DNNs are vastly more computationally expensive making them unsuitable for a real-time application on resource-constrained devices. In this paper, we present a distance estimation model, DECADE, that processes each detector output instead of constructing pixel-wise depth/disparity maps. In it, we propose a pose estimation DNN to estimate allocentric orientation of detections to supplement the distance estimation DNN in its prediction of distance using bounding box features. We demonstrate that these modules can be attached to any detector to extend object detection with fast distance estimation. Evaluation of the proposed modules with attachment to and fine-tuning on the outputs of the YOLO object detector on the KITTI 3D Object Detection dataset achieves state-of-the-art performance with 1.38 meters in Mean Absolute Error and 7.3% in Mean Relative Error in the distance range of 0-150 meters. Our extensive evaluation scheme not only evaluates class-wise performance, but also evaluates range-wise accuracy especially in the critical range of 0-70m.

Original languageEnglish (US)
Title of host publication2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages334-340
Number of pages7
ISBN (Electronic)9798350377705
DOIs
StatePublished - 2024
Event2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, United Arab Emirates
Duration: Oct 14 2024Oct 18 2024

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period10/14/2410/18/24

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'DECADE: Towards Designing Efficient-yet-Accurate Distance Estimation Modules for Collision Avoidance in Mobile Advanced Driver Assistance Systems'. Together they form a unique fingerprint.

Cite this