TY - JOUR
T1 - Decentralized Federated Learning with Model Caching on Mobile Agents
AU - Wang, Xiaoyu
AU - Xiong, Guojun
AU - Cao, Houwei
AU - Li, Jian
AU - Liu, Yong
N1 - Publisher Copyright:
© 2025, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2025/4/11
Y1 - 2025/4/11
N2 - Federated Learning (FL) trains a shared model using data and computation power on distributed agents coordinated by a central server. Decentralized FL (DFL) utilizes local model exchange and aggregation between agents to reduce the communication and computation overheads on the central server. However, when agents are mobile, the communication opportunity between agents can be sporadic, largely hindering the convergence and accuracy of DFL. In this paper, we propose Cached Decentralized Federated Learning (Cached-DFL) to investigate delay-tolerant model spreading and aggregation enabled by model caching on mobile agents. Each agent stores not only its own model, but also models of agents encountered in the recent past. When two agents meet, they exchange their own models as well as the cached models. Local model aggregation utilizes all models stored in the cache. We theoretically analyze the convergence of Cached-DFL, explicitly taking into account the model staleness introduced by caching. We design and compare different model caching algorithms for different DFL and mobility scenarios. We conduct detailed case studies in a vehicular network to systematically investigate the interplay between agent mobility, cache staleness, and model convergence. In our experiments, Cached-DFL converges quickly, and significantly outperforms DFL without caching.
AB - Federated Learning (FL) trains a shared model using data and computation power on distributed agents coordinated by a central server. Decentralized FL (DFL) utilizes local model exchange and aggregation between agents to reduce the communication and computation overheads on the central server. However, when agents are mobile, the communication opportunity between agents can be sporadic, largely hindering the convergence and accuracy of DFL. In this paper, we propose Cached Decentralized Federated Learning (Cached-DFL) to investigate delay-tolerant model spreading and aggregation enabled by model caching on mobile agents. Each agent stores not only its own model, but also models of agents encountered in the recent past. When two agents meet, they exchange their own models as well as the cached models. Local model aggregation utilizes all models stored in the cache. We theoretically analyze the convergence of Cached-DFL, explicitly taking into account the model staleness introduced by caching. We design and compare different model caching algorithms for different DFL and mobility scenarios. We conduct detailed case studies in a vehicular network to systematically investigate the interplay between agent mobility, cache staleness, and model convergence. In our experiments, Cached-DFL converges quickly, and significantly outperforms DFL without caching.
UR - http://www.scopus.com/inward/record.url?scp=105004000834&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105004000834&partnerID=8YFLogxK
U2 - 10.1609/aaai.v39i20.35429
DO - 10.1609/aaai.v39i20.35429
M3 - Conference article
AN - SCOPUS:105004000834
SN - 2159-5399
VL - 39
SP - 21296
EP - 21303
JO - Proceedings of the AAAI Conference on Artificial Intelligence
JF - Proceedings of the AAAI Conference on Artificial Intelligence
IS - 20
T2 - 39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Y2 - 25 February 2025 through 4 March 2025
ER -