Decentralized Multi-robot Velocity Estimation for UAVs Enhancing Onboard Camera-based Velocity Measurements

Jiri Horyna, Vit Kratky, Eliseo Ferrante, Martin Saska

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Within the field of multi-robot systems, developing systems that rely only on onboard sensing without the use of external infrastructure (e.g. GNSS) has many potential applications. However, relying only on visual-based modalities for localization presents challenges in terms of accuracy and reliability. We introduce a decentralized multi-robot lateral velocity estimation method for Unmanned Aerial Vehicles (UAVs) to improve onboard measurements in case GNSS infrastructure is not available. This method relies on sharing the onboard measurements of neighbors, as well as the estimation of the relative motion of a focal UAV within the swarm, based on observation of coworking robots. The proposed velocity estimation method does not rely on centralized communication to achieve high reliability and scalability within the swarm system. The performance of the state estimation approach has been verified in simulations and real-world experiments. The results have shown that a swarm of UAVs using the proposed velocity estimator can stabilize individual robots when their primary onboard localization source is not reliable enough.

Original languageEnglish (US)
Title of host publication2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages11570-11577
Number of pages8
ISBN (Electronic)9781665479271
DOIs
StatePublished - 2022
Event2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Duration: Oct 23 2022Oct 27 2022

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2022-October
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Country/TerritoryJapan
CityKyoto
Period10/23/2210/27/22

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Decentralized Multi-robot Velocity Estimation for UAVs Enhancing Onboard Camera-based Velocity Measurements'. Together they form a unique fingerprint.

Cite this