TY - GEN
T1 - Decentralized two-sided sequential tests for a normal mean
AU - Wang, Van
AU - Mei, Yajun
PY - 2009
Y1 - 2009
N2 - This article is concerned with decentralized sequential testing of a normal mean μ with two-sided alternatives. It is assumed that in a single-sensor network system with limited local memory, i.i.d, normal raw observations are observed at the local sensor, and quantized into binary messages that are sent to the fusion center, which makes a final decision between the null hypothesis Ho : μ = 0 and the alternative hypothesis HI : μ == ±1. We propose a decentralized sequential test using the idea of tandem quantizers (or equivalently, a oneshot feedback). Surprisingly, our proposed test only uses the quantizers of the form I(Xn ≥ λ), but it is shown to be asymptotically Bayes. Moreover, by adopting the principle of invariance, we also investigate decentralized invariant tests with the stationary quantizers of the form I (|Xn| ≤ λ), and show that λ = 0.5 only leads to a suboptimal decentralized invariant sequential test. Numerical simulations are conducted to support our arguments.
AB - This article is concerned with decentralized sequential testing of a normal mean μ with two-sided alternatives. It is assumed that in a single-sensor network system with limited local memory, i.i.d, normal raw observations are observed at the local sensor, and quantized into binary messages that are sent to the fusion center, which makes a final decision between the null hypothesis Ho : μ = 0 and the alternative hypothesis HI : μ == ±1. We propose a decentralized sequential test using the idea of tandem quantizers (or equivalently, a oneshot feedback). Surprisingly, our proposed test only uses the quantizers of the form I(Xn ≥ λ), but it is shown to be asymptotically Bayes. Moreover, by adopting the principle of invariance, we also investigate decentralized invariant tests with the stationary quantizers of the form I (|Xn| ≤ λ), and show that λ = 0.5 only leads to a suboptimal decentralized invariant sequential test. Numerical simulations are conducted to support our arguments.
UR - http://www.scopus.com/inward/record.url?scp=70449504478&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70449504478&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2009.5206018
DO - 10.1109/ISIT.2009.5206018
M3 - Conference contribution
AN - SCOPUS:70449504478
SN - 9781424443130
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 2408
EP - 2412
BT - 2009 IEEE International Symposium on Information Theory, ISIT 2009
T2 - 2009 IEEE International Symposium on Information Theory, ISIT 2009
Y2 - 28 June 2009 through 3 July 2009
ER -