Abstract
The synovial fluid glycoprotein lubricin (also known as proteoglycan 4) is a mucin-type O-linked glycosylated biological lubricant implicated to be involved in osteoarthritis (OA) development. Lubricin’s ability to reduce friction is related to its glycosylation consisting of sialylated and unsialylated Tn-antigens and core 1 and core 2 structures. The glycans on lubricin have also been suggested to be involved in crosslinking and stabilization of the lubricating superficial layer of cartilage by mediating interaction between lubricin and galectin-3. However, with the spectrum of glycans being found on lubricin, the glycan candidates involved in this interaction were unknown. Here, we confirm that the core 2 O-linked glycans mediate this lubricin–galectin-3 interaction, shown by surface plasmon resonance data indicating that recombinant lubricin (rhPRG4) devoid of core 2 structures did not bind to recombinant galectin-3. Conversely, transfection of Chinese hamster ovary cells with the core 2 GlcNAc transferase acting on a mucin-type O-glycoprotein displayed increased galectin-3 binding. Both the level of galectin-3 and the galectin-3 interactions with synovial lubricin were found to be decreased in late-stage OA patients, coinciding with an increase in unsialylated core 1 O-glycans (T-antigens) and Tn-antigens. These data suggest a defect in crosslinking of surface-active molecules in OA and provide novel insights into OA molecular pathology.
Original language | English (US) |
---|---|
Pages (from-to) | 16023-16036 |
Number of pages | 14 |
Journal | Journal of Biological Chemistry |
Volume | 295 |
Issue number | 47 |
DOIs | |
State | Published - Nov 20 2020 |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology