Deep graph pose: A semi-supervised deep graphical model for improved animal pose tracking

The International Brain Laboratory

Research output: Contribution to journalConference articlepeer-review


Noninvasive behavioral tracking of animals is crucial for many scientific investigations. Recent transfer learning approaches for behavioral tracking have considerably advanced the state of the art. Typically these methods treat each video frame and each object to be tracked independently. In this work, we improve on these methods (particularly in the regime of few training labels) by leveraging the rich spatiotemporal structures pervasive in behavioral video — specifically, the spatial statistics imposed by physical constraints (e.g., paw to elbow distance), and the temporal statistics imposed by smoothness from frame to frame. We propose a probabilistic graphical model built on top of deep neural networks, Deep Graph Pose (DGP), to leverage these useful spatial and temporal constraints, and develop an efficient structured variational approach to perform inference in this model. The resulting semi-supervised model exploits both labeled and unlabeled frames to achieve significantly more accurate and robust tracking while requiring users to label fewer training frames. In turn, these tracking improvements enhance performance on downstream applications, including robust unsupervised segmentation of behavioral “syllables,” and estimation of interpretable “disentangled” low-dimensional representations of the full behavioral video. Open source code is available at

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
StatePublished - 2020
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: Dec 6 2020Dec 12 2020

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Deep graph pose: A semi-supervised deep graphical model for improved animal pose tracking'. Together they form a unique fingerprint.

Cite this