Deep Learning Based Irradiance Mapping Model for Solar PV Power Forecasting Using Sky Image

Fei Wang, Zhanyao Zhang, Hua Chai, Yili Yu, Xiaoxing Lu, Tieqiang Wang, Yuzhang Lin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The entrenched instability of solar power output throttles its further integration into power grids worldwide. Thus the precise solar power forecasting (SPF) is helpful for the improvement of power grid stability and better exploitation of clean solar energy. As an important role of ultra-short-term SPF, sky images always contain volatile clouds, which results in tempestuous variation of the output of PV plants. Therefore, an accurate model that can capture the mapping relationship between sky image data and solar irradiance data is significant for fulfilling the ultra-short-term SPF. To fill the gap in the content of this research field, this paper proposes two end to end irradiance mapping models based on deep learning technologies, namely convolutional neural network (CNN) and long short-term memory (LSTM) neural network. Then the mapping performance of the above two mapping models is compared to that of traditional artificial neural network (ANN) based model. In all the aforementioned models, it should be noted that the solar irradiance data output by mapping models is in one-to-one correspondence with the input sky image data in time. The deterministic and probability methods are applied to statistically evaluate the mapping result of CNN and LSTM models. Our case study shows that deep learning architectures, especially the CNN based model, are good at mapping sky images to corresponding surface solar irradiance.

Original languageEnglish (US)
Title of host publication2019 IEEE Industry Applications Society Annual Meeting, IAS 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538645390
DOIs
StatePublished - Sep 2019
Event2019 IEEE Industry Applications Society Annual Meeting, IAS 2019 - Baltimore, United States
Duration: Sep 29 2019Oct 3 2019

Publication series

Name2019 IEEE Industry Applications Society Annual Meeting, IAS 2019

Conference

Conference2019 IEEE Industry Applications Society Annual Meeting, IAS 2019
Country/TerritoryUnited States
CityBaltimore
Period9/29/1910/3/19

Keywords

  • PV power forecasting
  • Solar irradiance
  • deep learning
  • end-to-end mapping model
  • sky image

ASJC Scopus subject areas

  • Filtration and Separation
  • Fluid Flow and Transfer Processes
  • Process Chemistry and Technology
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering
  • Industrial and Manufacturing Engineering
  • Transportation

Fingerprint

Dive into the research topics of 'Deep Learning Based Irradiance Mapping Model for Solar PV Power Forecasting Using Sky Image'. Together they form a unique fingerprint.

Cite this