TY - JOUR
T1 - Deep learning probability flows and entropy production rates in active matter
AU - Boffi, Nicholas M.
AU - Vanden-Eijnden, Eric
N1 - Publisher Copyright:
Copyright © 2024 the Author(s).
PY - 2024/6
Y1 - 2024/6
N2 - Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. They involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry. Yet, their efficient computation has remained elusive, as they depend on the system’s unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework to estimate the score of this density. We show that the score, together with the microscopic equations of motion, gives access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles. To represent the score, we introduce a spatially local transformer network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of active particles undergoing motility-induced phase separation (MIPS). We show that a single network trained on a system of 4,096 particles at one packing fraction can generalize to other regions of the phase diagram, including to systems with as many as 32,768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction.
AB - Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. They involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry. Yet, their efficient computation has remained elusive, as they depend on the system’s unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework to estimate the score of this density. We show that the score, together with the microscopic equations of motion, gives access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles. To represent the score, we introduce a spatially local transformer network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of active particles undergoing motility-induced phase separation (MIPS). We show that a single network trained on a system of 4,096 particles at one packing fraction can generalize to other regions of the phase diagram, including to systems with as many as 32,768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction.
KW - active matter
KW - machine learning
KW - scientific computing
KW - stochastic thermodynamics
UR - http://www.scopus.com/inward/record.url?scp=85195887986&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85195887986&partnerID=8YFLogxK
U2 - 10.1073/pnas.2318106121
DO - 10.1073/pnas.2318106121
M3 - Article
C2 - 38861599
AN - SCOPUS:85195887986
SN - 0027-8424
VL - 121
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 25
M1 - e2318106121
ER -