DeepMapping2: Self-Supervised Large-Scale LiDAR Map Optimization

Chao Chen, Xinhao Liu, Yiming Li, Li Ding, Chen Feng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

LiDAR mapping is important yet challenging in selfdriving and mobile robotics. To tackle such a global point cloud registration problem, DeepMapping [1] converts the complex map estimation into a self-supervised training of simple deep networks. Despite its broad convergence range on small datasets, DeepMapping still cannot produce satisfactory results on large-scale datasets with thousands of frames. This is due to the lack of loop closures and exact cross-frame point correspondences, and the slow convergence of its global localization network. We propose DeepMapping2 by adding two novel techniques to address these issues: (1) organization of training batch based on map topology from loop closing, and (2) self-supervised local-to-global point consistency loss leveraging pairwise registration. Our experiments and ablation studies on public datasets such as KITTI, NCLT, and Nebula demonstrate the effectiveness of our method.

Original languageEnglish (US)
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PublisherIEEE Computer Society
Pages9306-9316
Number of pages11
ISBN (Electronic)9798350301298
DOIs
StatePublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: Jun 18 2023Jun 22 2023

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2023-June
ISSN (Print)1063-6919

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period6/18/236/22/23

Keywords

  • Robotics

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'DeepMapping2: Self-Supervised Large-Scale LiDAR Map Optimization'. Together they form a unique fingerprint.

Cite this