Density estimation with adaptive sparse grids for large data sets

Benjamin Peherstorfer, Dirk Pflüger, Hans Joachim Bungartz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Nonparametric density estimation is a fundamental problem of statistics and data mining. Even though kernel density estimation is the most widely used method, its performance highly depends on the choice of the kernel bandwidth, and it can become computationally expensive for large data sets. WTe present an adaptive sparse-grid-based density estimation method which discretizes the estimated density function on basis functions centered at grid points rather than on kernels centered at the data points. Thus, the costs of evaluating the estimated density function are independent from the number of data points. We give details on how to estimate density functions on sparse grids and develop a cross validation technique for the parameter selection. We show numerical results to confirm that our sparse-grid-based method is well-suited for large data sets, and, finally, employ our method for the classification of astronomical objects to demonstrate that it is competitive to current kernel-based density estimation approaches with respect to classification accuracy and runtime. Copyright

Original languageEnglish (US)
Title of host publicationSIAM International Conference on Data Mining 2014, SDM 2014
EditorsMohammed J. Zaki, Arindam Banerjee, Srinivasan Parthasarathy, Pang Ning-Tan, Zoran Obradovic, Chandrika Kamath
PublisherSociety for Industrial and Applied Mathematics Publications
Pages443-451
Number of pages9
ISBN (Electronic)9781510811515
DOIs
StatePublished - 2014
Event14th SIAM International Conference on Data Mining, SDM 2014 - Philadelphia, United States
Duration: Apr 24 2014Apr 26 2014

Publication series

NameSIAM International Conference on Data Mining 2014, SDM 2014
Volume1

Other

Other14th SIAM International Conference on Data Mining, SDM 2014
CountryUnited States
CityPhiladelphia
Period4/24/144/26/14

ASJC Scopus subject areas

  • Computer Science Applications
  • Software

Fingerprint Dive into the research topics of 'Density estimation with adaptive sparse grids for large data sets'. Together they form a unique fingerprint.

  • Cite this

    Peherstorfer, B., Pflüger, D., & Bungartz, H. J. (2014). Density estimation with adaptive sparse grids for large data sets. In M. J. Zaki, A. Banerjee, S. Parthasarathy, P. Ning-Tan, Z. Obradovic, & C. Kamath (Eds.), SIAM International Conference on Data Mining 2014, SDM 2014 (pp. 443-451). (SIAM International Conference on Data Mining 2014, SDM 2014; Vol. 1). Society for Industrial and Applied Mathematics Publications. https://doi.org/10.1137/1.9781611973440.51