Depth map prediction from a single image using a multi-scale deep network

David Eigen, Christian Puhrsch, Rob Fergus

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Predicting depth is an essential component in understanding the 3D geometry of a scene. While for stereo images local correspondence suffices for estimation, finding depth relations from a single image is less straightforward, requiring integration of both global and local information from various cues. Moreover, the task is inherently ambiguous, with a large source of uncertainty coming from the overall scale. In this paper, we present a new method that addresses this task by employing two deep network stacks: one that makes a coarse global prediction based on the entire image, and another that refines this prediction locally. We also apply a scale-invariant error to help measure depth relations rather than scale. By leveraging the raw datasets as large sources of training data, our method achieves state-of-the-art results on both NYU Depth and KITTI, and matches detailed depth boundaries without the need for superpixelation.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems
PublisherNeural information processing systems foundation
Pages2366-2374
Number of pages9
Volume3
EditionJanuary
StatePublished - 2014
Event28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014 - Montreal, Canada
Duration: Dec 8 2014Dec 13 2014

Other

Other28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014
Country/TerritoryCanada
CityMontreal
Period12/8/1412/13/14

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Depth map prediction from a single image using a multi-scale deep network'. Together they form a unique fingerprint.

Cite this