Design, analysis and system-level modelling of a single axis capacitive accelerometer

Zakriya Mohammed, Owais Talaat Waheed, Ibrahim M. Elfadel, Aveek Chatterjee, Mahmoud Rasras

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The paper demonstrates the design and complete analysis of 1- axis MEMS capacitive accelerometer. The design is optimized for high linearity, high sensitivity, and low cross-axis sensitivity. The noise analysis is done to assure satisfactory performance under operating conditions. This includes the mechanical noise of accelerometer, noise due to interface electronics and noise caused by radiation. The latter noise will arise when such accelerometer is deployed in radioactive (e.g., nuclear power plants) or space environments. The static capacitance is calculated to be 4.58 pF/side. A linear displacement sensitivity of 0.012μm/g (g=9.8m/s2) is observed in the range of ±15g. The differential capacitive sensitivity of the device is 90fF/g. Furthermore, a low cross-axis sensitivity of 0.024fF/g is computed. The effect of radiation is mathematically modelled and possibility of using these devices in radioactive environment is explored. The simulated noise floor of the device with electronic circuit is 0.165mg/Hz1/2.

Original languageEnglish (US)
Title of host publicationMicro- and Nano-Systems Engineering and Packaging
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850640
DOIs
StatePublished - 2016
EventASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016 - Phoenix, United States
Duration: Nov 11 2016Nov 17 2016

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume10

Other

OtherASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016
Country/TerritoryUnited States
CityPhoenix
Period11/11/1611/17/16

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Design, analysis and system-level modelling of a single axis capacitive accelerometer'. Together they form a unique fingerprint.

Cite this