TY - JOUR
T1 - Design and Analysis of High Performance Heterogeneous Block-based Approximate Adders
AU - Farahmand, Ebrahim
AU - Mahani, Ali
AU - Hanif, Muhammad Abdullah
AU - Shafique, Muhammad
N1 - Publisher Copyright:
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
PY - 2023/11/9
Y1 - 2023/11/9
N2 - Approximate computing is an emerging paradigm to improve the power and performance efficiency of error-resilient applications. As adders are one of the key components in almost all processing systems, a significant amount of research has been carried out toward designing approximate adders that can offer better efficiency than conventional designs; however, at the cost of some accuracy loss. In this article, we highlight a new class of energy-efficient approximate adders, namely, Heterogeneous Block-based Approximate Adders (HBAAs), and propose a generic configurable adder model that can be configured to represent a particular HBAA configuration. An HBAA, in general, is composed of heterogeneous sub-adder blocks of equal length, where each sub-adder can be an approximate sub-adder and have a different configuration. The sub-adders are mainly approximated through inexact logic and carry truncation. Compared to the existing design space, HBAAs provide additional design points that fall on the Pareto-front and offer a better quality-efficiency tradeoff in certain scenarios. Furthermore, to enable efficient design space exploration based on user-defined constraints, we propose an analytical model to efficiently evaluate the Probability Mass Function (PMF) of approximation error and other error metrics, such as Mean Error Distance (MED), Normalized Mean Error Distance (NMED), and Error Rate (ER) of HBAAs. The results show that HBAA configurations can provide around 15% reduction in area and up to 17% reduction in energy compared to state-of-the-art approximate adders.
AB - Approximate computing is an emerging paradigm to improve the power and performance efficiency of error-resilient applications. As adders are one of the key components in almost all processing systems, a significant amount of research has been carried out toward designing approximate adders that can offer better efficiency than conventional designs; however, at the cost of some accuracy loss. In this article, we highlight a new class of energy-efficient approximate adders, namely, Heterogeneous Block-based Approximate Adders (HBAAs), and propose a generic configurable adder model that can be configured to represent a particular HBAA configuration. An HBAA, in general, is composed of heterogeneous sub-adder blocks of equal length, where each sub-adder can be an approximate sub-adder and have a different configuration. The sub-adders are mainly approximated through inexact logic and carry truncation. Compared to the existing design space, HBAAs provide additional design points that fall on the Pareto-front and offer a better quality-efficiency tradeoff in certain scenarios. Furthermore, to enable efficient design space exploration based on user-defined constraints, we propose an analytical model to efficiently evaluate the Probability Mass Function (PMF) of approximation error and other error metrics, such as Mean Error Distance (MED), Normalized Mean Error Distance (NMED), and Error Rate (ER) of HBAAs. The results show that HBAA configurations can provide around 15% reduction in area and up to 17% reduction in energy compared to state-of-the-art approximate adders.
KW - Approximate computing
KW - accuracy
KW - approximate adders
KW - efficiency
KW - error analysis
KW - low latency
KW - low power
KW - performance estimation
KW - quality
KW - tradeoff
UR - http://www.scopus.com/inward/record.url?scp=85177983270&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85177983270&partnerID=8YFLogxK
U2 - 10.1145/3625686
DO - 10.1145/3625686
M3 - Article
AN - SCOPUS:85177983270
SN - 1539-9087
VL - 22
JO - ACM Transactions on Embedded Computing Systems
JF - ACM Transactions on Embedded Computing Systems
IS - 6
M1 - 106
ER -