Design and experimental verification of a constrained finite time optimal control scheme for the attitude control of a quadrotor helicopter subject to wind gusts

Kostas Alexis, George Nikolakopoulos, Anthony Tzes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper the design and the experimental verification of a Constrained Finite Time Optimal (CFTO) control scheme for the attitude control of an Unmanned Quadrotor Helicopter (UqH) subject to wind gusts is being presented. In the proposed design the UqH has been modeled by a set of Piecewise Affine (PWA) linear equations while the wind gusts effects are embedded in the system model description as the affine terms. In this approach the switching among the PWA model descriptions are ruled by the rate of the rotation angles. In the design of the stabilizing CFTO-controller both the magnitude of external disturbances (worst case applied wind gust), and the mechanical constraints of the UqH such as maximum thrust in the rotors and UqH's angles rate are taken under consideration in order to design an off-line controller that could rapidly be applied to a UqH in a form of a look-up table. The proposed control scheme is applied in experimental studies and multiple test-cases are presented that prove the efficiency of the proposed scheme.

Original languageEnglish (US)
Title of host publication2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Pages1636-1641
Number of pages6
DOIs
StatePublished - 2010
Event2010 IEEE International Conference on Robotics and Automation, ICRA 2010 - Anchorage, AK, United States
Duration: May 3 2010May 7 2010

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Country/TerritoryUnited States
CityAnchorage, AK
Period5/3/105/7/10

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Design and experimental verification of a constrained finite time optimal control scheme for the attitude control of a quadrotor helicopter subject to wind gusts'. Together they form a unique fingerprint.

Cite this