Design of high-performance, power-efficient optical NoCs using Silica-embedded silicon nanophotonics

Elena Kakoulli, Vassos Soteriou, Charalambos Koutsides, Kyriacos Kalli

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

With on-chip electrical interconnects being marred by high energy-To-bandwidth costs, threatening multicore scalability, on-chip nanophotonics, which offer high throughput, yet energy-efficient communication, form an alternative attractive counterpart. In this paper we consider silicon nanophotonic components that are embedded completely within the silica (SiO2) substrate as opposed to prior-Art that utilizes die on-surface silicon nanophotonics. As nanophotonic components now reside in the silica substrate's subsurface non-obstructive interconnect geometries offering higher network throughput can be implemented. First, we show using detailed simulations based on commercial optical tools that such Silicon-In-Silica (SiS) structures are feasible, derive their geometry characteristics and design parameters, and then demonstrate our proof of concept by utilizing a hybrid SiS-based photonic mesh-diagonal links network-on-chip topology. In pushing the performance envelope even more, we next develop (1) an associated contention-Aware photonic adaptive routing function, and (2) a parallelized photonic channel allocation scheme, that in tandem further reduce message delivery latency. An extensive experimental evaluation, including utilizing traffic benchmarks gathered from full-system chip multiprocessor simulations, shows that our methodology boosts network throughput by up to 30.8%, reduces communication latency by up to 22.5%, and improves the throughput-To-power ratio by up to 23.7% when compared to prior-Art.

Original languageEnglish (US)
Title of host publicationProceedings of the 33rd IEEE International Conference on Computer Design, ICCD 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-8
Number of pages8
ISBN (Electronic)9781467371650
DOIs
StatePublished - Dec 14 2015
Event33rd IEEE International Conference on Computer Design, ICCD 2015 - New York City, United States
Duration: Oct 18 2015Oct 21 2015

Publication series

NameProceedings of the 33rd IEEE International Conference on Computer Design, ICCD 2015

Other

Other33rd IEEE International Conference on Computer Design, ICCD 2015
Country/TerritoryUnited States
CityNew York City
Period10/18/1510/21/15

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Design of high-performance, power-efficient optical NoCs using Silica-embedded silicon nanophotonics'. Together they form a unique fingerprint.

Cite this