TY - JOUR
T1 - Detecting nonlinear dynamics in spatio-temporal systems, examples from ecological models
AU - Little, Sarah
AU - Ellner, Stephen
AU - Pascual, Mercedes
AU - Neubert, Michael
AU - Kaplan, Daniel
AU - Sauer, Timothy
AU - Caswell, Hal
AU - Solow, Andy
N1 - Funding Information:
This work arose out of a workshop on Nonlinear Data Analysis in Marine Ecology held at the Woods Hole Oceanographic Institution in April 1994, sponsored by the Office of Naval Research. We thank the participants for discussions and ideas generated during the workshop. This work was funded in part by ONR grant number N00014-92-J-1527. WHOI contribution number 9095.
PY - 1996
Y1 - 1996
N2 - Mathematical models of marine populations exhibit chaotic dynamics. However, we hypothesize that in moving water, Eulerian sampling of spatially heterogeneous populations may obscure any deterministic signal beyond the resolving capabilities of presently available nonlinear signal processing techniques. To examine this hypothesis we created two spatio-temporal models of population dynamics. To caricature actual ocean sampling limitations, we sampled the model output in two ways, random walks to simulate Eulerian sampling, and spatial averages to simulate population measurements from finite volumes. Results indicate that the ability to identify underlying nonlinear dynamics quickly degrades as the step size of a random walk sampling increases. On the other hand, the analysis techniques used are more robust in the face of spatial averaging.
AB - Mathematical models of marine populations exhibit chaotic dynamics. However, we hypothesize that in moving water, Eulerian sampling of spatially heterogeneous populations may obscure any deterministic signal beyond the resolving capabilities of presently available nonlinear signal processing techniques. To examine this hypothesis we created two spatio-temporal models of population dynamics. To caricature actual ocean sampling limitations, we sampled the model output in two ways, random walks to simulate Eulerian sampling, and spatial averages to simulate population measurements from finite volumes. Results indicate that the ability to identify underlying nonlinear dynamics quickly degrades as the step size of a random walk sampling increases. On the other hand, the analysis techniques used are more robust in the face of spatial averaging.
KW - Marine ecology
KW - Nonlinear dynamics
KW - Sampling
KW - Spatio-temporal chaos
UR - http://www.scopus.com/inward/record.url?scp=0011198894&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0011198894&partnerID=8YFLogxK
U2 - 10.1016/0167-2789(96)00030-9
DO - 10.1016/0167-2789(96)00030-9
M3 - Article
AN - SCOPUS:0011198894
SN - 0167-2789
VL - 96
SP - 321
EP - 333
JO - Physica D: Nonlinear Phenomena
JF - Physica D: Nonlinear Phenomena
IS - 1-4
ER -