Detecting rheumatic arthritis by artificial intelligent multi-parameter classifications of optical tomographic images

Christian D. Klose, Alexander D. Klose, Alexander Scheel, Uwe Netz, Jochen Beuthan, Andreas H. Hielscher

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We demonstrate that sensitivity and specificity in detecting rheumatoid arthritis from optical tomographic images can be greatly increased when an artificial intelligent multi-parameter classifications method, called Self-Organizing Mapping (SOM), is used.

Original languageEnglish (US)
Title of host publicationOptical Society of America (OSA) Topical Meeting on Biomedical Optics
PagesBSuE59
DOIs
StatePublished - 2008
EventBiomedical Optics, BIOMED 2008 - St. Petersburg, FL, United States
Duration: Mar 16 2008Mar 19 2008

Other

OtherBiomedical Optics, BIOMED 2008
Country/TerritoryUnited States
CitySt. Petersburg, FL
Period3/16/083/19/08

ASJC Scopus subject areas

  • Biomedical Engineering
  • Biomaterials
  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Detecting rheumatic arthritis by artificial intelligent multi-parameter classifications of optical tomographic images'. Together they form a unique fingerprint.

Cite this