Detecting rheumatic arthritis by artificial intelligent multi-parameter classifications of optical tomographic images

Christian D. Klose, Alexander D. Klose, Alexander Scheel, Uwe Netz, Jochen Beuthan, Andreas H. Hielscher

    Research output: Contribution to conferencePaperpeer-review

    Abstract

    We demonstrate that sensitivity and specificity in detecting rheumatoid arthritis from optical tomographic images can be greatly increased when an artificial intelligent multi-parameter classifications method, called Self-Organizing Mapping (SOM), is used.

    Original languageEnglish (US)
    PagesBSuE59
    DOIs
    StatePublished - 2008
    EventBiomedical Optics, BIOMED 2008 - St. Petersburg, FL, United States
    Duration: Mar 16 2008Mar 19 2008

    Other

    OtherBiomedical Optics, BIOMED 2008
    CountryUnited States
    CitySt. Petersburg, FL
    Period3/16/083/19/08

    ASJC Scopus subject areas

    • Biomedical Engineering
    • Biomaterials
    • Electronic, Optical and Magnetic Materials
    • Atomic and Molecular Physics, and Optics

    Fingerprint Dive into the research topics of 'Detecting rheumatic arthritis by artificial intelligent multi-parameter classifications of optical tomographic images'. Together they form a unique fingerprint.

    Cite this